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1.	Introduction
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Problems	of	the	Standard	Model	

The Standard Model (SM) is the best theory  in describing the 
nature of elementary particle physics, which is in excellent 
agreement with almost of all current experimental results 
(including LHC Run-2 results) as of TODAY	

However,	

New Physics beyond SM is strongly suggested by both 
experimental & theoretical points of view
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Questions	that	the	Standard	Model	cannot	answer

1. What	derives	the	Electroweak	Symmetry	Breaking?
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1.	What	drives	the	Electroweak	symmetry	breaking?

SM	Higgs	potential	with	a	negative	mass	squared:

V = − m2
H(H†H) + λ(H†H)2 + const
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Questions	that	the	Standard	Model	cannot	answer

1. What	derives	the	Electroweak	Symmetry	Breaking?	

2. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?
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2.	Neutrino	Mass	problemNeutrino Mass Problem
42 14. Neutrino mixing
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Figure 14.9: The regions of squared-mass splitting and mixing angle favored or
excluded by various experiments based on two-flavor neutrino oscillation analyses.
The figure was contributed by H. Murayama (University of California, Berkeley, and
IPMU, University of Tokyo). References to the data used in the figure can be found
at http://hitoshi.berkeley.edu/neutrino.
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Questions	that	the	Standard	Model	cannot	answer

1. What	derives	the	Electroweak	Symmetry	Breaking?	

2. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?	

3. What	is	the	nature	of	Dark	Matter?
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3.	Dark	Matter	Problem
Existence of Dark Matter has been established! 

Dark Matter particle:    non-baryonic 
electric charge neutral 
(quasi) stable            

Cosmological Dark Matter Problem 

No suitable DM candidate in the Standard Model

Energy budget of the 
Universe is precisely 
determined by recent CMB 
anisotropy observations 
(WMAP & Planck) 

28
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Questions	that	the	Standard	Model	cannot	answer

1. What	derives	the	Electroweak	Symmetry	Breaking?	

2. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?	

3. What	is	the	nature	of	Dark	Matter?	

4. What	drives	Cosmic	Inflation	before	Big	Bang?
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4,	Cosmic	Infaltion
The	problems	of	Big-Bang	Cosmology

‣ Flatness	problem	
‣ Horizon	problem	
‣ Need	to	dilute	unwanted	topological	defects	
‣ Origin	of	the	primordial	density	fluctuations

Problem of Big Bang Cosmology

Origin of primordial density fluctuations

Seeds of the large sale structure 
of the Universe

Solution: Cosmological Inflation before Big Bang

Inflation is driven by a scalar field (infalton) 
with a very flat potential 

30

δT
T

≃ 10−5

Seeds	of	the	large	scale	structure

Solution:	Cosmic	Inflation	before	Big-Bang	cosmology,		
driven	by	a	scalar	field	(inflaton)	which	has	a	very	flat	potential

No	suitable	inflaton	candidate	in	the	SM
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Questions	that	the	Standard	Model	cannot	answer

1. What	derives	the	Electroweak	Symmetry	Breaking?	

2. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?	

3. What	is	the	nature	of	Dark	Matter?	

4. What	drives	Cosmic	Inflation	before	Big	Bang?	

5. What	is	the	origin	of	Matter-Antimatter	asymmetry	

in	the	Universe?
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5.	What	is	the	origin	of	Matter-Antimatter	Asymmetry?

*Baryogenesis	in	the	SM	context:	Electroweak	Baryogenesis		
Unfortunately,	it	doesn’t	work	with	the	125	GeV	Higgs	mass

Observations:		(1)	Big	asymmetry	
		
																											(2)	Small	ratio	to	entropy

nB ≫ nB̄

nB

s
≃

nB − nB̄

s
≃ 10−10 ≪ 1

What	is	the	origin?
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Questions	that	the	Standard	Model	cannot	answer

1. What	derives	the	Electroweak	Symmetry	Breaking?	

2. Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?	

3. What	is	the	nature	of	Dark	Matter?	

4. What	drives	Cosmic	Inflation	before	Big	Bang?	

5. What	is	the	origin	of	Matter-Antimatter	asymmetry	

in	the	Universe?

We	will	first	discuss….
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2.	Classically	conformal	extension		
of	the	SM	for	dynamical/radiative		

EW	symmetry	breaking

16



U(1)	Higgs	model	and	Coleman-Weinberg	mechanism

By	imposing	Classical	Conformal	symmetry

17

Vtree = λΦ(Φ†Φ)2

ℒY = Y Φ ΨΨ + h . c .
Yukawa	coupling	is	allowed:

*	some	more	chiral	fermions	for	anomaly	cancellation

Field Symbol U(1)
Higgs Scalar Φ +2
Weyl Fermion Ψ −1

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 +1/3
ui
R 3 1 2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
eiR 1 1 −1 −1

H 1 2 −1/2 0

Table 2: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

a new general-purpose experiment to be installed in a beam dump facility at the SPS

to search for

〈σv〉 ∝ g2ζg
2
BL (1)

〈σv〉 ∝ g4ζ (2)

g2ζg
2
BL & 1 (3)

Ωζh
2 = 0.12 (4)

γ e (5)

τDM > τU ' 1017 sec |Q| (= 1, 3 ZBL ζ ζ̄ !−, q !+, q̄ ; gζ = gBL = 0.2 MZBL = 3TeV Ωζh
2 = 0.12MZBL [GeV] (6)

1

Toy	model:

*define	this	theory	as	``Massless	Theory”



Coleman-Weinberg	mechanism
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VCW = Vtree + V1−loop

Φ =
1

2
(ϕ + iχ),

potential [13] is calculated to be

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(

ln

[

φ2

v2φ

]

−
25

6

)

, (14)

where φ/
√
2 = #[Φ] is a real scalar, and we have chosen the renormalization scale as the VEV

of Φ (〈φ〉 = vφ). The stationary condition dV/dφ|φ=vφ
= 0 leads to a relation,

λΦ =
11

6
βΦ, (15)

between the renormalized self-coupling defined as

λΦ =
1

3!

d4V (φ)

dφ4

∣

∣

∣

∣

φ=vφ

(16)

and the coefficient of the one-loop corrections 2,

βΦ =
1

16π2

(

20λ2
Φ + 96g4X − 3Y 4

M

)

&
1

16π2

(

96g4X − 3Y 4
M

)

. (17)

Here, we have used λ2
Φ ' g4X in the last expression. Note that the U(1)X symmetry breaking

via the Coleman-Weinberg mechanism relates the U(1)X Higgs quartic coupling to the gauge

and Majorana Yukawa couplings in Eq. (15). The vacuum stability requires YM < (32)1/4gX .

We next consider the SM Higgs sector. In our model, the electroweak symmetry breaking is

achieved in a very simple way. Once the U(1)X symmetry is radiatively broken, the SM Higgs

doublet mass is generated through the mixing quartic term in Eq. (13):

V ⊃
λH

4
h4 −

λmix

4
v2φh

2, (18)

where we have replaced H by H = 1/
√
2 (0 h)T in the unitary gauge. As a result, the elec-

troweak symmetry is broken. Here, we emphasize a crucial difference from the SM, namely, the

electroweak symmetry breaking is triggered by the radiative U(1)X gauge symmetry breaking

[14], not by a negative mass squared added by hand. The SM Higgs boson mass (mh) is given

by

m2
h = λmixv

2
φ = 2λHv

2
h, (19)

where vh = 246 GeV is the SM Higgs VEV. Considering the Higgs boson mass ofmh = 125 GeV

[15] and the LEP constraint on vφ ! 10 TeV [16–19], we find λmix " 10−4 and the smallness of

λmix is justified.

2 In a more precise formulation of the Coleman-Weinberg effective potential, βΦ includes a λmix term which

we have neglected because it is negligibly small compared to the dominant contribution from g4
X
. Also, we

define our inflaton trajectory along the φ direction with H = 0. Hence, even for λmix ) λΦ, we can neglect

the λmix term in our inflationary analysis.

8

	where βΦ =
1

16π2 (96g4 − Y4)

➢ Radiative	U(1)	symmetry	breaking	at		

➢ Parameter	relations:	

ϕ = vϕ

λΦ =
11
6

βΦ

m2
ϕ =

d2VCW

dϕ2
ϕ→vϕ

→
3

2π2
g2M2

Z′ 

Coleman	&	Weinberg,		
PRD	7	(1973)	1888

Y → 0



Interesting	properties:
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➢ Origin	of	gauge	symmetry	breaking?																																					
quantum	corrections	(QM	system	knows	where	to	be)	

➢ Predictability																																																																																						

Relation	between	Higgs	mass	and	U(1)	gauge	boson	mass	

➢ Yukawa	coupling	must	be	sub-dominant,																																																		

βΦ =
1

16π2 (96g4 − Y4) > 0,

	otherwise	unstable	vacuum

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.02

0.00
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0.08

0.10

Vtree

VCW

d2VCW

dϕ2
ϕ→0

= 0



Application	to	the	Standard	Model?
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➢ Not	working:	top	Yukawa	dominates	1-loop	corrections	

➢ Even	if	top	Yukawa	was	not	large	(80’s),	mH < mW

• Radiative	EW	symmetry	breaking?

• Induced	EW	symmetry	breaking?

Coleman-Weinberg Mechanism

Radiative Symmetry breaking as origin of SM Higgs potential

Hidden U(1) sector scalar potential of the form

V� = ��

⇣
�†�

⌘2
+ V1�loop

=
1

4
���

4 +
��
8
�4

 
ln

"
�2

v2�

#
�

25

6

!
, where � =

p

2Re [�]

(2)

Radiative symmetry breaking occurs at h�i = v�

Combined Higgs and � potential is

V = �h

⇣
H

†
H

⌘2
� �mix

⇣
H

†
H

⌘⇣
�†�

⌘
+ V� (3)

With �mix > 0, h�i = v� generates SM Higgs VEV, driving EW
symmetry breaking.

Victor Baules (vabaules@crimson.ua.edu) (In Collaboration with Nobuchika Okada (U. of Alabama) Manuscript in preparation )Suppressed Higgs Coupling SUSY 2021 August 25, 2021 3 / 8

Classically	conformal	U(1)	extended	SM

Haba,	N.	Kitazawa	&	NO	(2005)	
Iso,	NO	&	Orikasa	(2009)

+VCW(Φ†Φ)

Negative	Higgs	mass	squared	is	induced	by	 	VEV!Φ
m2

H = − λmix |⟨Φ⟩ |2
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Symmetry	Breaking	

1st:	Radiative	U(1)	breaking	by	Coleman-Weinberg	mechanism	

V(ϕ) =
λΦ

4
ϕ4 +

12g4
X

16π2
ϕ4 ln [ ϕ2

v2
X ] −

25
6

ϕ = 2Re [Φ]

⟨Φ⟩ =
vX

2

2nd:	Electroweak	symmetry	breaking	is	triggered

This	picture	needs	an	SM	extension	with	an	extra	gauge	symmetry!	
New	Physics	beyond	the	SM:	GSM → GSM × GX



3.	Classically	conformal		
U(1)	B-L	(U(1)X)	Extended	SM

22
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Minimal	gauged	B-L	extension	of	the	SM Davidson	(1979);		
Mohapatra	&	Marshak	(1980)

Based	on	SU(3)c × SU(2)L × U(1)Y × U(1)B−L

B-L	(Baryon	number	minus	Lepton	number)

Particle	Content

Minimal Gauged B-L Extension of the SM

The model is based on 

Particle Contents 

New fermions:

New scalar:

Mohapatra & Marshak; 
Wetterich; others

2

SU(3)c SU(2)L U(1)Y U(1)B−L

qiL 3 2 +1/6 +1/3
ui
R 3 1 +2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
N i 1 1 0 −1
eiR 1 1 −1 −1
H 1 2 −1/2 0
Φ 1 1 0 +2

TABLE I: Particle content. In addition to the SM particle
contents, the right-handed neutrino N i (i = 1, 2, 3 denotes
the generation index) and a complex scalar Φ are introduced.

SU(3)c × SU(2)L × U(1)Y × U(1)B−L and the particle
content is listed in Table 1 [33]. The SM singlet scalar (Φ)
breaks the U(1)B−L gauge symmetry down to Z2 (B−L)

by its vacuum expectation value (vev), and at the same
time generates the right-handed neutrino masses. The
Lagrangian terms relevant for the seesaw mechanism are
given by

L ⊃ −Y ij
D N iH†!jL −

1

2
Y i
NΦN icN i + h.c., (1)

where the first term yields the Dirac neutrino mass after
electroweak symmetry breaking, while the right-handed
neutrino Majorana mass term is generated by the second
term associated with the B − L gauge symmetry break-
ing. Without loss of generality, we use the basis which
diagonalizes the second term and makes Y i

N real and pos-
itive.
Consider the following tree level action in the Jordan

frame:

Stree
J =

∫

d4x
√
−g

[

−
(

m2
P

2
+ ξHH†H + ξΦ†Φ

)

R

+(DµH)†gµν(DνH)− λH

(

H†H −
v2

2

)2

+(DµΦ)
†gµν(DνΦ)− λ

(

Φ†Φ−
v2B−L

2

)2

−λ′(Φ†Φ)(H†H)
]

, (2)

where v and vB−L are the vevs of the Higgs fields H and
Φ respectively. To simplify the discussion, we assume
that λ′ is sufficiently small so it can be ignored, and also
ξH % ξ.
The relevant one-loop renormalization group improved

effective action can be written as [41]

SJ =

∫

d4x
√
−g

[

−
(

m2
P + ξG(t)2φ2

2

)

R

+
1

2
G(t)2(∂φ)2 −

1

4
λ(t)G(t)4φ4

]

, (3)

where t = ln(φ/µ) and G(t) = exp(−
∫ t
0 dt′γ(t′)/(1 +

γ(t′))), with

γ(t) =
1

(4π)2

(

1

2

∑

i

(Y i
N (t))2 − 12 g2B−L(t)

)

(4)

being the anomalous dimension of the inflaton field.
gB−L denotes the U(1)B−L gauge coupling and µ the
renormalization scale. In the presence of the nonmini-
mal gravitational coupling, the one loop renormalization
group equations (RGEs) of λ, gB−L, ξ and Y i

N are given
by [32, 33]

(4π)2
dλ

dt
= (2 + 18 s2)λ2 − 48λ g2B−L + 96g4B−L

+2λ
∑

i

(Y i
N )2 −

∑

i

(Y i
N )4, (5)

(4π)2
dgB−L

dt
=

(

32 + 4 s

3

)

g3B−L, (6)

(4π)2
dξ

dt
= (ξ + 1/6)

(

(1 + s2)λ− 2γ
)

, (7)

(4π)2
dY i

N

dt
= (Y i

N )3 − 6g2B−LY
i
N +

1

2
Y i
N

∑

j

(Y j
N )2,

(8)

where the s factor is defined as

s(φ) ≡

(

1 + ξφ2

m2

P

)

1 + (6ξ + 1) ξφ
2

m2

P

. (9)

In the Einstein frame with a canonical gravity sector,
the kinetic energy of φ can be made canonical with re-
spect to a new field σ = σ(φ) [7],

(

dσ

dφ

)2

=
G(t)2Ω(t) + 3m2

P (∂φΩ(t))
2/2

Ω(t)2
, (10)

where,

Ω(t) = 1 + ξG(t)2φ2/m2
P . (11)

The action in the Einstein frame is then given by

SE =

∫

d4x
√
−gE

[

−
1

2
m2

PRE +
1

2
(∂Eσ)

2 − VE(σ)

]

,

(12)
with

VE(φ) =
1
4λ(t)G(t)4 φ4

(

1 + ξ φ2

m2

P

)2 . (13)

In our numerical work, we employ above potential with
the RGEs given in Eqs. (5-8). However, for a qualitative
discussion it is reasonable to use the following leading-log
approximation of the above potential:

VE(φ) '

(

λ0

4 +
96 g2

B−L

16 π2 ln
[

φ
µ

])

φ4

(

1 + ξ φ2

m2

P

)2 , (14)

R 3	RHNs

B-L	Higgs	field
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Properties	of	Minimal	B-L	Model

• Anomaly-free	global	B-L	symmetry	in	the	SM	is	gauged	
• Right-handed	neutrinos	to	cancel	gauge/gravitational	anomaly		
• Spontaneous	B-L	gauge	symmetry	breaking	to	generate	
Majorana	mass	for	RHNs	

• Type-I	seesaw	mechanism	after	electroweak	symmetry	
breaking	

• Leptogenesis	via	CP-asymmetric	out-of-equilibrium	NR	decay	

!14

Simple scenario: Baryogenesis via Leptogenesis
Fukugita &Yanagida (1986)

Ø Right-handed neutrino decay in the early Universe 
generates lepton asymmetry

Ø Lepton asymmetry is converted to Baryon 
asymmetry by the SM non-perturbative effect 
(Sphaleron processes)

5 

Link	to	the	generation	of	BAU:	Leptogenesis		

CP-asymmetric	out-of-equilibrium	decay	of	heavy	neutrinos	

à Lepton	asymmetry	of	the	Universe		

à	BAU	from	LAU	via	sphaleron	process	

Ø  Tiny	neutrino	masses		
Ø  Baryon	Asymmetry	of	the	Universe	

Seesaw	Mechanism	

Fukugita-Yanagida,		
PLB	174	(1986)	45	
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Comment:	History	of	the	SM	construction

SU(3)c × SU(2)L × U(1)Y

The	Standard	Model	based	is	on	the	gauge	symmetry:	

QCD Electroweak	1960s
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Comment:	History	of	the	SM	construction

SU(3)c × SU(2)L × U(1)Y

The	Standard	Model	based	is	on	the	gauge	symmetry:	

QCD Electroweak	1960s

1950s	and	before
global	SU(3):	hadron	model	
global	SU(2):	Isospin	for	particle	classification	
global	hypercharge:	Gell-Mann-Nishijima	relation

• The	gauge	groups	of	the	SM	were	initially	introduced	as	
global	symmetries		( )	

• They	are	now	gauge	groups	—>	gauge	bosons
E < MW,Z, ΛQCD

Global	 	picture	is	good	since	 	?U(1)B−L E < MZ′ 
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Generalization	of	the	minimal	B-L	model

3	RHNs
U(1)x	Higgs

‣ U(1)x	charge:																																				(xH=0	is	the	B-L	model)	
‣ Free	from	gauge	&	mixed	gauge-gravitational	anomalies	
‣ Seesaw	Mechanism	is	automatically	implemented

QX = QY xH + QB−L

Oda, NO & Takahashi (2015) 
Das, Oda, NO & Takahashi 
(2016)
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Classically	Conformal	extension	of	Minimal	B-L	Model

Iso, NO & Orikasa (2009)

‣ No	mass	terms	due	to	the	conformal	invariance	
‣ We	set		
‣ No	symmetry	breaking	at	the	tree-level

Assuming	a	small	mixing	quartic	coupling,	the	symmetry	
breaking	occurs	in	the	following	way…..
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Symmetry	Breaking	

1st:	Radiative	U(1)	breaking	by	Coleman-Weinberg	mechanism	

V(ϕ) =
λΦ

4
ϕ4 +

12g4
X

16π2
ϕ4 ln [ ϕ2

v2
X ] −

25
6

ϕ = 2Re [Φ]

⟨Φ⟩ =
vX

2

2nd:	Electroweak	symmetry	breaking	is	triggered

 Negative	mass	squared	generated!
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mϕ =
3

2π2
gBL mZ′ =

6
π2

g2
BL vBL

Higgs	mass	relations:	

λΦ =
11
π2

g4
BL

Relations	among	parameters

CW	mechanism: 

Mixing	between	Higgs	bosons:	

m2
h = λmixv2

BL = 2λHv2
h

By	using	 	&	 ,	we	have	
only	2	free	parameters:

mh = 125 GeV vh = 246 GeV
gX, vX
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Extension	of	B-L	Model	with	a	DM	candidate

• 	parity	&	 -odd	RHN	DMZ2 Z2 NO	&	Seto	(2009)

DM candidate is still missing in TeV-scale minimal B-L model

There have been many proposal for introduction of DM particles 
Concise model: no extension of the particle content 

Ø Assigning odd parity 
for one RHN

Ø The others are all even

SU(3)c SU(2)L U(1)Y U(1)B−L Z2

N j
R 1 1 0 −1 +

NR 1 1 0 −1 −
Φ 1 1 0 +2 +

Table 1: The particle content of the minimal U(1)B−L extended SM with Z2 parity. In addition
to the SM particle content, the three right-handed neutrinos N j

R (j = 1, 2) and NR and a
complex scalar Φ are introduced. The Z2 parity is also introduced, under which the right-
handed neutrino NR is odd, while the other fields are even.

1 Introduction

ΩDMh
2 " 0.12

V (φ) =
1

4
λ(φ)

(
φ2 − v2

)2
(1)

mh = 126 GeV (2)

Mt = 173.34 GeV (3)

αs(MZ) = 0.1184 (4)

λ(µ " 1010 GeV) = 0 (5)

λ " 0.13 (6)

∆m2
H = (7)

" − Y 2
t

16π2
Λ2 (8)

∆mψ ∼ mψ logΛ (9)

m2
φ +∆m2

φ = (mψ +∆mψ)
2 (10)

WY = Y ij
D N c

i HuLj (11)

λBL (12)

ψ (13)

〈φ〉 (14)

MBL = 1 TeV, mφ = 2 TeV mÑc
i
= 8 TeV, (15)

〈φ〉 =
−m2

φ

g2BL

= 6 TeV (16)

mZ′ = 2.8 TeV (17)

αBL =
1

40
(18)

χ1 = cos θ ψ + sin θ λBL (19)

χ2 = − sin θ ψ + cos θ λBL (20)

mχ1 ∼
1

2
mZ′ (21)

νi (22)

Ni (23)

W/Z/h (24)

)/ν/ν (25)

ν1L, ν2L, ν2R, ν3L, ν3R (26)

ν1L, ν2L, ν2R, ν3L, ν3R (27)

ν2R ν2R (28)

ν3R ν3R (29)

ν1L ν1L (30)

1

NO & Seto, 
PRD 82 (2010) 023507 

Instead, introduce a parity

J=1,2

L ⊃ Y 3j
D N c

3!jH (1)

Y 3j
D → 0 (2)

e+ (3)

e− (4)

ΩDMh
2 # 0.12

V (φ) =
1

4
λ(φ)

(
φ2 − v2

)2
(5)

mh = 126 GeV (6)

Mt = 173.34 GeV (7)

αs(MZ) = 0.1184 (8)

λ(µ # 1010 GeV) = 0 (9)

λ # 0.13 (10)

∆m2
H = (11)

# − Y 2
t

16π2
Λ2 (12)

∆mψ ∼ mψ logΛ (13)

m2
φ +∆m2

φ = (mψ +∆mψ)
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χ1 = cos θ ψ + sin θ λBL (23)
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1
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2

Enhancement of symmetry: 

L ⊃ Y 3j
D N c
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Anisimov & Di Bari, PRD 80 (2009) 073017
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-odd	RHN	is	stable	—>	DM		
The	others	are	even
Z2

Phenomenology of 
TeV-scale minimal U(1)X model with RHN DM 

(1) Z’-portal RHN DM 

(2) Z’ boson search at the LHC Run-2

(3) We will discuss a complementarity
between DM physics and LHC physics 

RHN DM communicates with 
the SM particles through Z’ 
boson mediated processes

Search for a narrow resonance 
with the di-lepton final state at 
ATLAS and CMS with LHC Run-2
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SM

NO	&	Orikasa	(2012);	
NO	&	Burell	(2015);	
NO	&	S.	Okada	(2015)	
NO,	S.	Okada	&	Raut	(2017)	
Oda,	NO	&	Takahashi	(2017)

3	RHNs	->	2	RHNs	for	Minimal	Seesaw		
																																								+	
																		1	B-L	Higgs/Z’-portal	WIMP	DM			

TeV-scale minimal B-L model with RHN DM 

3 right-handed neutrinos à 2+1 

Ø 2 RHNs for the minimal seesaw  

ü Neutrino oscillation data with one massless eigenstate

Ø Z2-odd 1 RHN for thermal Dark Matter

King, NPB 576 (2000) 85;
Frampton, Glashow & Yanagida, 
PLB 548 (2002) 119 
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Complementarity	between	DM	physics	and	LHC	Phenomenology of 
TeV-scale minimal U(1)X model with RHN DM 

(1) Z’-portal RHN DM 

(2) Z’ boson search at the LHC Run-2

(3) We will discuss a complementarity
between DM physics and LHC physics 

RHN DM communicates with 
the SM particles through Z’ 
boson mediated processes

Search for a narrow resonance 
with the di-lepton final state at 
ATLAS and CMS with LHC Run-2
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Extension	of	Minimal	B-L	Model	with	inflaton

• B-L	Higgs	as	Inflaton NO,	Rehman	&	Shafi	(2011)	
NO	&	Raut	(2015)

Introduce	non-minimal	gravitational	coupling	to	the	B-L	Higgs:	

provides the best opportunity for obtaining the adequate
baryogenesis as in the model of Ref. [19] which provides a
GUT-setting for our scenario and also discuss the viable
100 TeV scale scenario. We elaborate a bit more on the
So(10) model in Sec. VIII and Sec. IX is devoted to a new
ΔB ¼ 4 process induced in the AD scenario we pursue and
then we conclude our discussion in Sec. X.

II. THE MODEL

While there are different ways to implement AD bar-
yognesis, the model presented here is a generalization of
the work in [30] which uses scalar field Φ with the
appropriate B or L quantum number, both as the inflaton
and the AD field. We, non-minimally, couple the AD field
to gravity so that it is consistent with CMB observations.
Let us start by reviewing the results of Ref. [30]. The
starting Lagrangian for Φ in this case is given by:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
M2

PfRþ ∂μΦ†∂μΦ − VðΦÞ
#
; ð1Þ

whereMP ¼ 2.44 × 1018 GeV is the reduced Planck mass,
f ¼ 1þ 2ξ Φ†Φ

M2
P

with ξ being non-minimal coupling to

gravity.We choose VðΦÞ as in [30]

VðΦÞ ¼ m2
ΦΦ†Φ − AðΦ2 þΦ†2Þ þ λðΦ†ΦÞ2: ð2Þ

To discuss inflation in the model, we make transforma-
tion of the fields to go to the Einstein frame by gEμν ¼ gμν=f,
which then leads to the following action SE in the Einstein
frame,

SE ¼
Z

d4x
"
−
1

2
M2

PRE

þ
$
1

f
þ 12ξ2

f2
Φ†Φ
M2

P

%
∂μΦ†∂μΦ − VEðΦÞ

#
; ð3Þ

where

VEðΦÞ ¼ VðΦÞ
ð1þ 2ξ Φ†Φ

M2
P
Þ2
: ð4Þ

To study the inflation picture and the AD mechanism, we
switch to radial parametrization of Φ ¼ 1ffiffi

2
p jΦjeiθ. The jΦj

field is then the inflaton field. It is now clear that for large
values of the field jΦj≳MP=

ffiffiffi
ξ

p
in the early stage of the

universe, the potential flattens out and is a constant to a
good approximation driving the exponential expansion of
the universe—the inflationary phase. The inflation is
essentially controlled by one free parameter ξ. The fits
to observations such as the spectral index ns as well as the
tensor-to-scalar ratio r for a fixed number of e-folds Ne in
such a model have been carried out in [33,34]. The initial
value of the inflaton field jΦj is appropriately chosen to fit

observations. For example, one bench mark choice of
parameters that fits data is ξ ∼ 1600 and λ ∼ 10−3 so that
one gets ns ¼ 0.968 and r ¼ 0.003 for Ne ¼ 60, which
are fully consistent with observations [33]. The jΦjint ∼
0.23MP for inflaton value at horizon exit and jΦjend ∼
0.029MP at the end of inflation. We choose jΦjend as the
initial value for the inflaton field in AD baryogenesis. The
initial value of the phase of the Φ field can be chosen at
random and we choose it to be θ ¼ Oð1Þ ≠ π=2. Note the
large value of the ξ above. Clearly it raises the question of
unitarity violation above a certain mass scale. This question
has been analyzed for generic non-minimally coupled
inflaton in Refs. [35,36] and it has been noted that there
is no real issue: since during inflation the inflaton value is
around the Planck scale, we estimate the effective cutoff to
satisfy the unitarity by expanding the inflaton around its
background value, so that the effective cutoff is found to be
the Planck scale. The second point we want to emphasize is
that the presence of the A term breaks the global baryon
number symmetry carried by the rest of the Lagrangian and
plays a crucial role in the baryon asymmetry generation.
This is also required by Sakharov’s conditions for baryo-
genesis. It splits the masses of the real and imaginary parts
of the Φ field. We will see later (Eq. (10), (11) and below)
that indeed nB is proportional to A.

III. EVOLUTION OF THE UNIVERSE
IN OUR PICTURE

In this model, there are four stages of the evolution of the
early universe:
(1) For jΦj≳MP=

ffiffiffi
ξ

p
when the nonminimal coupling in

the Einstein frame leads to a constant VðΦÞ, it drives
inflation as just noted in the previous section.

(2) In the second phase, the value of jΦj is still large but
not large enough to make the nonminimal gravity
coupling dominate; instead the dominant term driv-
ing the evolution of the jΦj is the λjΦj4 term. Since
the field jΦj has rolled down the potential and its
value has become less than MP=

ffiffiffi
ξ

p
the effect of the

nonminimal coupling becomes unimportant and
inflation ends. At the beginning of this stage, the
real and imaginary parts of the field are already
different due to the CP-violating A term in the
potential. This asymmetry leads eventually to the
baryon asymmetry of the universe and is the key idea
in AD baryogenesis.

(3) The third stage is where the quadratic term in the
potential dominates over the quartic term leading to
an oscillatory behavior of jΦj (see below) and the
universe behaves like it is matter dominated. This
approximation of transition of the potential from
being quartic dominated to quadratic dominated is
called the threshold approximation in [30].

(4) The fourth stage is when the AD field decays and
reheat takes place. The reheat temperature deter-

AFFLECK-DINE BARYOGENESIS WITH OBSERVABLE NEUTRON- … PHYS. REV. D 104, 055030 (2021)

055030-3

where f = 1 + 2ξ
Φ†Φ
M2

P

• 																								vBL ≪ MP

• During	the	inflation,	the	inflation	potential	is	dominated	
by																											 													V ∼ λΦ(Φ†Φ)2

`` 	inflation	with	non-minimal	gravitational	coupling”	λϕ4
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Slow-roll	inflation	to	drive	the	cosmic	inflation

0 5 10

0.0

0.5

1.0

1.5

�/MP

c N
×V

(�
)/M

P4
Slow-roll:	E ∼ VEnd	of	Inflation:		

									K ∼ V

Oscillation	->	decay	->	reheating

ϕ + δϕ

• Inflation	takes	place	during	slow-roll:	 	
• Quantum	fluctuation	 	is	magnified	to	a	macroscopic	scale					
—>	primordial	density	fluctuation

a(t) ∝ eHinf t

δϕ
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FIG. 5. Constraints in the r vs. ns plane for the Planck
2018 baseline analysis, and when also adding BICEP/Keck
data through the end of the 2018 season plus BAO data to
improve the constraint on ns. The constraint on r tightens
from r0.05 < 0.11 to r0.05 < 0.035. This figure is adapted from
Fig. 28 of Ref. [2] with the green contours being identical.
Some additional inflationary models are added from Fig. 8 of
Ref. [35] with the purple region being natural inflation.
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PS
= r ≤ 0.036 (95%)

Constraints	on	inflation	scenario	from	CMB	observations

Tensor-to-scalar	ratio:

Power	spectrum	of	scalar	
perturbation:

PS(k0) = 2.099 × 10−9

k0 = 0.05 Mpc−1

Spectral	index:

ns = 1 +
d ln PS

d ln k
≃ 0.965
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Inflationary	predictions	of	a	slow-roll	inflation

ℒinf =
1
2

ημν(∂μϕ)(∂νϕ) − V(ϕ)

Defining	the	slow-roll	parameters	(in	Planck	units	 )	MP = 1

Before we discuss the models, let’s recall the basic equations used to calculate the
inflationary parameters. The slow-roll parameters may be defined as (see ref. [18] for a
review and references):
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Here and below we use units mP = 2.4⇥ 1018 GeV = 1, and primes denote derivatives with
respect to the inflaton field �. The spectral index ns, the tensor to scalar ratio r and the
running of the spectral index ↵ ⌘ dns/d ln k are given in the slow-roll approximation by

ns = 1� 6✏+ 2⌘ , r = 16✏ , ↵ = 16✏⌘ � 24✏2 � 2⇣2 . (1.2)

The amplitude of the curvature perturbation �R is given by

�R =
1

2
p
3⇡

V
3/2

|V 0| , (1.3)

which should satisfy �2
R = 2.215 ⇥ 10�9 from the Planck measurement [19] with the pivot

scale chosen at k0 = 0.05 Mpc�1.
The number of e-folds is given by

N =

Z �0

�e

V d�

V 0 , (1.4)

where �0 is the inflaton value at horizon exit of the scale corresponding to k0, and �e is the
inflaton value at the end of inflation, defined by max(✏(�e), |⌘(�e)|, |⇣2(�e)|) = 1. The value
of N depends logarithmically on the energy scale during inflation as well as the reheating
temperature, and is typically around 50–60.

2 Radiatively corrected quadratic and quartic potentials

Inflation driven by scalar potentials of the type

V =
1

2
m

2
�
2 +

�

4!
�
4 (2.1)

provide a simple realization of an inflationary scenario [5]. However, the inflaton field �

must have couplings to ‘matter’ fields which allow it to make the transition to hot big bang
cosmology at the end of inflation. Couplings such as (1/2)h�N̄N or (1/2)g2�2

�
2 (to a

Majorana fermion N and a scalar � respectively) induce correction terms to the potential
which, to leading order, take the Coleman-Weinberg form [20]
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◆
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Here, µ is a renormalization scale which we set to µ = mP
1, and  = (2h4 � g

4)/(32⇡2) in
the one loop approximation.

1
For the radiatively corrected quartic potential the observable inflationary parameters do not depend on

the choice of the renormalization scale. However, this may not be the case for the radiatively corrected

quadratic potential, as discussed in ref. [21].
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Spectral	index	&	tensor-to-scalar	ratio:

The	power	spectrum	of	scalar	perturbation:	 PS =
1

12π2

V3

(V′ )2

The	number	of	e-folds:	

Here,	 	at	the	horizon	exit	&	the	end	of	inflation	ϕ = ϕ0 ϵ(ϕe) = 1

Ne = ∫
ϕ0

ϕe

dϕ
V
V′ 
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Inflationary	predictions	of	a	slow-roll	inflation

The	power	spectrum	of	scalar	perturbation:		

																														 	PS =
1

12π2

V3

(V′ )2
→ 2.099 × 10−9

The	number	of	e-folds:	 Fix	(say,	50-60)	Ne = ∫
ϕ0

ϕe

dϕ
V
V′ 

→

predictions
ns & r
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Inflationary	Predictions	VS	Planck+BK18+BAO	results		

• Once	 	is	fixed,	only	1	free	parameter	( )	determines	the	predictions	
• Predicted	GWs	are	

Ne ξ
r ≳ 0.003

Future	experiments	(CMB-S4,	LiteBIRD)	will	cover	the	region!

BK18+Planck+BAO

Stage 3

LiteBIRD

CMB-S4

0.94 0.95 0.96 0.97 0.98 0.99

310-4

0.001

0.003

0.01

0.03

0.1

ns

rr

ns

Ne = 50 60 70

ξ ≫ 1

ξ = 0
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Comment	on	Non-minimal	 	inflationλϕ4

• Simple	1-field	inflation	with	the	introduction	of	 	
• Consistent	with	Planck	+	others	with	a	suitable	choice	of	
quartic	coupling	 	

• Potentially,	any	scalar	can	play	the	role	of	inflaton	

ξ |ϕ |2 R

λ |ϕ |4

*	SM	Higgs	is	not	likely	the	inflaton	since	its	running	
quartic	coupling	runs	into	negative	at	high	energies



41

• The	classically	conformal	gauged	U(1)	B-L	extended	SM	
can	solve	several	problems	of	the	SM:

What	drives	Electroweak	Symmetry	Breaking?	

Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?	

What	is	the	nature	of	Dark	Matter?	

What	drives	Cosmic	Inflation	before	Big	Bang?	

What	is	the	origin	of	Matter-Antimatter	asymmetry	

in	the	Universe?



4.	Some	more	phenomenology	of	
Classically	Conformal	U(1)	Extended	SM

42
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High	predictability	for	the	parameters	( )g2
X ≫ Y2

N

‣ No	mass	term	
‣ We	set		
‣ No	symmetry	breaking	at	the	tree-level

V(ϕ)1−loop =
λΦ

4
ϕ4 +

12g4
X

16π2
ϕ4 ln [ ϕ2

v2
X ] −

25
6

Vtree =
1
4

λHh4 −
1
4

λmixh2ϕ2 +
1
4

λΦϕ4

Radiative	U(1)	symmetry	breaking	via	CW	Mechanism,	and	
then	induced	EW	symmetry	breaking	
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mϕ =
3

2π2
gX mZ′ =

6
π2

g2
X vX

Higgs	mass	relations:	

λΦ =
11
π2

g4
X

Relations	among	parameters

CW	mechanism: 

Mixing	between	Higgs	bosons:	

By	using	 	&	 ,	we	have	
only	2	free	parameters:

mh = 125 GeV vh = 246 GeV

gX, vX
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The	B-L	Higgs	inflation	scenario	(inflaton	=	B-L	Higgs)	is	more	
predictive	in	the	the	classically	conformal	B-L	model.

In	non-minimal	quartic	inflation,	once	 	is	fixed,	the	inflationary	
predictions	( )	and	the	quartic	coupling	( )	are	determined		
by	only	 .

Ne
ns, r λΦ

ξ

Oda,	NO,	Raut	&	Takahashi	(2017)	
NO	&	Raut	(2019)

10-4 0.1 100
0.950

0.955

0.960

0.965

0.970

ξ

n s

10-4 0.1 100

0.005

0.010

0.050

0.100

ξ

r

Ne = 60



46

λΦ =
11
π2

g4
BL

10-4 0.1 100
10-14

10-12

10-10

10-8

10-6

10-4

0.01

ξ

λ

In	the	classically	conformal	B-L	model,	B-L	Higgs/Inflaton	quartic	
coupling	is	determined	by	the	B-L	gauge	coupling.	

Thus,	one-to-one	correspondence	between	ξ & gBL

* The	relation	is	at	VEV	scale,	we	take	into	account	RG	evolutions	to	
the	inflation	scale.	

λΦ
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Inflationary	Predictions	VS	Planck+BK18+BAO	results		

(Ne, ξ) ↔ (ns, r)

(Ne, gBL) ↔ (ns, r)
32

Inflationary	Predictions	VS	Planck+BK18+BAO	results		

• Once	 	is	fixed,	only	1	free	parameter	( )	determines	the	predictions	
• Predicted	GWs	are	

Ne ξ
r ≳ 0.003

Future	experiments	(CMB-S4,	LiteBIRD)	will	cover	the	region!

BK18+Planck+BAO

Stage 3

LiteBIRD

CMB-S4

0.94 0.95 0.96 0.97 0.98 0.99

310-4

0.001

0.003

0.01

0.03

0.1

ns

rr

ns

Ne = 50 60 70

ξ ≫ 1

ξ = 0
ξ ns r λΦ

0.0164 0.962 0.036 1.57× 10−12

0.0745 0.964 0.011 8.38× 10−12

1 0.965 0.00408 5.23× 10−10

10 0.965 0.00356 4.54× 10−8

100 0.965 0.00350. 4.47× 10−6

1000 0.965 0.00350 4.46× 10−4

104 0.965 0.00350 4.46× 10−2

Table 2: Inflationary predictions for various benchmark ξ values and N = 55. Values of
ξ < 0.0134 (r > 0.036) are excluded by the Bicep/Keck results [50]. In our scenario, λ126(φI) =
O(0.1) is required (see text for details).

The inflationary predictions for the tensor-to-scalar ratio (r), spectral index (ns), and run-
ning of the spectral index (α = dns

d ln k ) are given by

r = 16ε, ns = 1− 6ε+ 2η, α= 16εη − 24ε2 − 2ζ, (5.7)

where all the three slow-roll parameters are evaluated at φ = φI . For a fixed N value, sub-
stituting for ∆2

R in Eqs. (5.5) and (5.6), the quantities λΦ, φI and φE (and therefore all the
inflationary predictions) are determined as a function of the non-minimal gravitational coupling
ξ. The results for N = 55 are summarized in Table 2. The values of ξ < 0.0134 (r > 0.036)
are excluded by the Bicep/Keck results [50]. The inflationary predictions for ns, r, and α
rapidly approach their asymptotic values for ξ ! 1, for example, see Fig. 5. We also find that
φI # MPS, which justifies the approximation used in Eq. (5.2).

After the end of inflation, the inflaton field rolls down to the potential minimum where it
oscillates and decays to the SM particles to reheat the universe. For fixed values of N and ξ,
the reheat temperature TR is determined as [51]7

N $ 51.4 +
2

3
ln

(
VE(φI)

1015 GeV

)
+

1

3
ln

(
TR

107 GeV

)
. (5.8)

If the reheat temperature TR > MPS, the PS symmetric vacuum gets restored during reheating
and its subsequent breaking produces unacceptably large number of monopoles. To avoid this
problem, we impose TR well below MPQ for the rest of our analysis, namely,TR < 10−2MPS. In
Sec. 3, we have found the maximum value of MPS ≈ 1012 GeV, so that the maximum reheating
temperature TR = 1010 GeV.

In Fig. 5 we show the results for TR, nS and r for N = 50 and 55. The top-left panel shows
r as a function of ξ. The shaded region is excluded by the combination of the BICEP2/Keck
Array (BK18) experiments and Planck 2018 [53]. The top-right panel in Fig. 5 shows that
N ! 55 is excluded (gray shaded region) in order to prevent the restoration of PS symmetry.
The bottom panel in Fig. 5 shows the inflationary predictions for the same N values along with
the current best constraints from the combination of the BICEP2/Keck Array 2018 experiments

7See Ref. [54] for a more precise formula.

16

Ne = 55

In	the	classically	conformal	B-L	model,	
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4-1.Hunting	inflaton	at	FASER

NO	&	Raut,	PRD	103	(2021)	5,	055022
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ForwArd	Search	ExpeRiment	(FASER)

➢Recently	approved	(March	2019)	new	experiment	at	
CERN	to	look	for	long-lived	charge-neutral	particles		

➢ The	FASER	detector	will	be	installed	in	a	tunnel	near	
the	ATLAS	detector	about	480	m	away
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FASER	Search	for	Dark	Scalar	

Upcoming	FASER	experiment	will	search	for	a	light	“Dark	Scalar’’	
mainly	produced	from	rare	B-meson	decays	through	the	mixing	
with	the	SM	Higgs	boson

21 

We diagonalize the mass matrix by
[
h

φ

]
=

[
cos θ sin θ

− sin θ cos θ

][
h̃

φ̃

]
, (14)

where h̃ and φ̃ are the mass eigenstates, and the mixing angle θ is determined by

2vXvhλmix = (m2
h −m2

φ) tan 2θ. (15)

Since we are interested in the case with m2
φ " m2

h and λmix " 1, we find

θ # vh
vX

=

√
16παXvh
mZ′

" 1. (16)

The mass eigenvalues are given by

m2
φ̃
= m2

φ +
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
# m2

φ −m2
hθ

2,

m2
h̃
= m2

h −
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
# m2

h. (17)

For the parameter region which will be searched by the FASER, we find mφ̃,h̃ # mφ,h and φ̃, h̃ # φ, h. For notational simplicity,
we will refer to the mass eigenstates without using tilde in the rest of this letter. Note that for a fixed value of mN/mZ′ , the
inflaton mass (mφ) and its mixing angle with the Higgs field (θ) are uniquely determined by αX and mZ′ with Eqs. (11) and
(16).

Nonminimal quartic inflation: We here give a brief review on nonminimal quartic inflation with the action in the Jordan
frame:

SJ =

∫
d4x

√
−g

[
−1

2
f(φ)R+

1

2
gµν (∂µφ) (∂νφ)− VJ(φ)

]
, (18)

where φ is a real scalar field (inflaton), f(φ) = (1 + ξφ2) with a real parameter ξ > 0,

VJ(φ) =
1

4
λφ4 (19)

is the inflaton quartic potential, and the reduced Planck mass of MP = 2.44× 1018 GeV is set to be 1 (Planck unit). Using the
transformation of f(φ)gµν = gEµν , the action in the Einstein frame is described as
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, and σ is a canonically normalized scalar field (inflaton in the Einstein frame) which is related to the original field φ by
(
dσ

dφ

)2

=
1 + ξ(6ξ + 1)φ2

(1 + ξφ2)2
. (22)

Using Eq. (22), we can express the slow-roll inflation parameters in the Einstein frame as
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Diagonalizing	the	scalar	mass	matrix	

In	terms	of	FASER	Search	of	the	exotic	scalar,	we	are	interested	
in	the	case:			
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# m2
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For the parameter region which will be searched by the FASER, we find mφ̃,h̃ # mφ,h and φ̃, h̃ # φ, h. For notational simplicity,
we will refer to the mass eigenstates without using tilde in the rest of this letter. Note that for a fixed value of mN/mZ′ , the
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After	all,	in	Classically	Conformal	U(1)x	extended	SM,				

the U(1)X gauge coupling.

αX =
gX

2

4π
mZ′ = 2gXvX (1)

The Yukawa sector of the SM is extended to include

LY ⊃ −
3∑

i,j=1

Y ij
D #iLHN j

R − 1

2

3∑

k=1

Y k
MΦNk C

R Nk
R, (2)

〈H〉 〈Φ〉 #L (3)

where YD (YM ) is a Dirac (Majorana) type Yukawa coupling. Without a loss of generality, we chose the Majorana Yukawa
couplings to be flavor diagonal. The Majorana masses for the RHNs are generated by the U(1)X gauge symmetry breaking. For
simplicity, we fix Y 1,2,3

M = YM and thus RHNs have a degenerate mass spectrum, mN = YMvX/
√
2. After the electroweak

symmetry breaking, the light neutrino masses are generated via the type-I seesaw mechanism [14].
Imposing the classical conformal invariance, the Higgs potential of our model is given by

V = λH

(
H†H

)2
+ λΦ

(
Φ†Φ

)2 − λmix

(
H†H

)(
Φ†Φ

)
, (4)

V ⊃ −λmix

(
Φ†Φ

) (
H†H

)
+ λH

(
H†H

)2
(5)

→ −λmix〈Φ†Φ〉
(
H†H

)
+ λH

(
H†H

)2
(6)
(7)

where we set λH,Φ,mix > 0. Assuming λmix ' 1 (this will be justified later), we can separately analyze the Higgs potential
for Φ and H . The CW potential for the Higgs field Φ at the 1-loop level is given by [8]

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(
ln

[
φ2

v2X

]
− 25

6

)
, (8)

where φ =
√
2([Φ], vX is chosen as a renormalization scale, and the coefficient of the 1-loop corrections is approximately given

by

16π2βΦ ) 96g4X − 3Y 4
M ) 96g4X (9)

The stationary condition, dV/dφ|φ=vX
= 0, leads to

λΦ =
11

6
βΦ ) 176αX

4 , (10)

where the barred quantities are evaluated at 〈φ〉 = vX . The mass of φ is given by

m2
φ =

d2V

dφ2

∣∣∣∣
φ=vX

= βΦv
2
X ) 6

π
αXm2

Z′ (11)

where αX = g2X/(4π). The condition for the stability of U(1)X vacuum, m2
φ > 0, requires mZ′ > 21/4mN .

The U(1)X gauge symmetry breaking by 〈Φ〉 = vX/
√
2 induces a negative mass squared for the SM Higgs doublet

(−λmix|〈Φ〉|2) in Eq. (4) and triggers the electroweak symmetry breaking [9]. The SM(-like) Higgs boson mass (mh = 125
GeV) is described as

m2
h = λmixv

2
X = 2λHv2h, (12)

where vh = 246 GeV is the Higgs doublet VEV. From this formula, we can justify our assumption of λmix ' 1 by considering
the LEP constraint on vX ! 10 TeV [15–18].
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FASER	Search	for	Dark	Scalar		

A	light	Dark	Scalar	is	mainly	produced	through	rare	B-meson	decay	
through	its	mixing	with	the	SM	Higgs	boson:		

SU(3)c SU(2)L U(1)Y U(1)X

qiL 3 2 1/6 (1/6)xH + (1/3)

ui
R 3 1 2/3 (2/3)xH + (1/3)

diR 3 1 −1/3 (−1/3)xH + (1/3)

!iL 1 2 −1/2 (−1/2)xH − 1

eiR 1 1 −1 −xH − 1

H 1 2 −1/2 (−1/2)xH

N i
R 1 1 0 −1

Φ 1 1 0 2

TABLE I. The particle content of the minimal U(1)X model. i =
1, 2, 3 is the generation index.

anomalies. Once the U(1)X Higgs field (Φ) develops a vac-
uum expectation value (VEV), 〈Φ〉 = vX/

√
2, the U(1)X

gauge symmetry is broken and the Z ′ boson becomes mas-
sive, mZ′ = 2gXvX , where gX is the U(1)X gauge coupling.

The Yukawa sector of the SM is extended to include
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R Nk
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where YD (YM ) is a Dirac (Majorana) type Yukawa coupling.
Without a loss of generality, we chose the Majorana Yukawa
couplings to be flavor diagonal. The Majorana masses for the
RHNs are generated by the U(1)X gauge symmetry break-
ing. For simplicity, we fix Y 1,2,3

M = YM and thus RHNs have

a degenerate mass spectrum, mN = YMvX/
√
2. After the

electroweak symmetry breaking, the light neutrino masses are
generated via the type-I seesaw mechanism [14].
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where we set λH,Φ,mix > 0. Assuming λmix & 1 (this will be
justified later), we can separately analyze the Higgs potential
for Φ and H . The CW potential for the Higgs field Φ at the
1-loop level is given by [8]
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where αX = g2X/(4π). The condition for the stability of
U(1)X vacuum, m2

φ > 0, requires mZ′ > 21/4mN .

The U(1)X gauge symmetry breaking by 〈Φ〉 = vX/
√
2

induces a negative mass squared for the SM Higgs doublet
(−λmix|〈Φ〉|2) in Eq. (2) and triggers the electroweak symme-
try breaking [9]. The SM(-like) Higgs boson mass (mh = 125
GeV) is described as

m2
h = λmixv

2
X = 2λHv2h, (7)

where vh = 246 GeV is the Higgs doublet VEV. From this
formula, we can justify our assumption of λmix & 1 by con-
sidering the LEP constraint on vX ! 10 TeV [15–18].

The mass matrix for the Higgs bosons, φ and h, is given by

L ⊃ −
1

2

[

h φ
]

[

m2
h λmixvφvh

λmixvφvh m2
φ

] [

h

φ

]

. (8)

We diagonalize the mass matrix by
[

h

φ

]

=

[

cos θ sin θ

− sin θ cos θ

][

h̃

φ̃

]

, (9)

where h̃ and φ̃ are the mass eigenstates, and the mixing angle
θ is determined by

2vXvhλmix = (m2
h −m2

φ) tan 2θ. (10)

Since we are interested in the case with m2
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λmix & 1, we find

θ (
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vX
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√
16παXvh
mZ′

& 1. (11)

The mass eigenvalues are given by
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h

) sin2 θ
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For the parameter region which will be searched by the
FASER, we find mφ̃,h̃ ( mφ,h and φ̃, h̃ ( φ, h. For nota-
tional simplicity, we will refer to the mass eigenstates without
using tilde in the rest of this letter. Note that for a fixed value
of mN/mZ′ , the inflaton mass (mφ) and its mixing angle with
the Higgs field (θ) are uniquely determined by αX and mZ′

with Eqs. (6) and (11).
Nonminimal quartic inflation: We here give a brief re-

view on nonminimal quartic inflation with the action in the
Jordan frame:

SJ =

∫

d4x
√
−g

[

−
1

2
f(φ)R+

1

2
gµν (∂µφ) (∂νφ)

−VJ(φ)] , (13)
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FIG. 10. Benchmark Model S1. The decay length (top left panel), decay branching fractions
(bottom left panel), and FASER’s reach (right panel) for the dark Higgs boson with negligible
trilinear coupling to the SM Higgs. The gray shaded regions are excluded, and the colored contours
are the projected sensitivities of other proposed experiments; see text for details.

bosons. For the latter mechanism, SM Higgs bosons can decay through h ! ��, yielding a
signal of invisible Higgs decays that can be discovered at ATLAS or CMS or Higgs bosons
decaying to LLPs, which can be discovered by MATHUSLA, for example. However, the
trilinear coupling also yields a new production mechanism for FASER, namely, rare B

decays to strange hadrons and an o↵-shell Higgs boson, leading to B ! Xsh
⇤
! Xs��.

The corresponding decay branching fraction is given by [72, 73]

B(B ! Xs��) =
C

2
�
2

�B

m
5
b

256⇡3
f

✓
m�

mb

◆
, (19)

where C = 4.9⇥ 10�8 GeV�2, and f is given by [26]

f(x) =
1

3

p
1� 4x2(1 + 5x2

� 6x4)� 4x2(1� 2x2 + 2x4) log


1

2x

⇣
1 +

p
1� 4x2

⌘�
. (20)

Decay and Lifetime: If ✓ > 0, the dark Higgs can decay into SM fermions, and its decay
width and branching fractions are as discussed in Sec. VA.

Results: The expected reach of FASER 2 for dark Higgs bosons with sizable trilinear cou-
plings is shown in the right panel of Fig. 11. The shaded contours show results, the reach
obtained from the dark Higgs pair production process only, for � = 0.0046, 0.0015 cor-
responding to B(h ! ��) ⇡ 4700�2 = 10%, 1%. The larger value is currently allowed.
The smaller value will be very challenging to probe through invisible Higgs decays even
at the HL-LHC, but could be probed by other future colliders, such as the ILC [74] and
FCC [75].

As can be seen, the additional production mechanism through o↵-shell SM Higgs boson
B ! Xs�� allows FASER to probe parameter space reaching to lower values of the

22
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Search	for	Inflaton	at	FASER

Let	us	now	identify	the	U(1)x	Higgs	as	inflaton		
in	non-minimal	Inflation

★We	 have	 a	 connection	 among	 FASER	 search	 region,		
Inflationary	predictions	&	Z’-boson	search	at	LHC

mϕ, θ

gX(mϕ, θ), mZ′ (mϕ, θ)

ξ(mϕ, θ)

FASER	Search:	

Z’	boson	resonance	search:

Inflationary	predictions:	
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Hunting	Inflaton	at	FASER
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NO	&	Raut,	arXiv:	1910.09663

as a function of φ, αX , mZ′ and xH . On the other hand,
in the inflation analysis, the inflationary predictions are con-
trolled by only one parameter ξ. Once we fix a ξ value, φ0 and
λΦ(φ0) are completely fixed as listed in Table II. Hence, by
using Eq. (24) we can express αX as a function of mZ′ and
xH for a fixed value of ξ. In fact, for ξ ! 10, we find that
αX is almost independent of xH , so that the xH dependence
for inflationary predictions effectively drops off. Therefore,
the inflationary predictions, αX , mZ′ , mφ and θ are directly
related with each other through Eqs. (6), (11) and (24).

Planck 2018 !r ! 0.064"

500 1000 2000 5000
10!4

0.001

0.01

0.1

1

mZ ' !GeV"

g X

FIG. 1. The upper bounds on gX from the ATLAS result for xH =
−0.8, 0 and 10 (the diagonal lines from top to bottom), respectively.

The ATLAS and the CMS collaborations have been search-
ing for a narrow resonance at the LHC, and the most severe
constraint on the Z ′ boson of our model has been obtained
by the search with dilepton final states. The ATLAS col-
laboration has recently reported their final result of the LHC
Run-2 with a 139 fb−1 integrated luminosity [21]. Following
the analysis in Ref. [22], we interpret the ATLAS result into
an upper bound on gX as a function of mZ′ for a fixed xH

value. In Fig. 1, we show our results for xH = −0.8, 0, and
10 (the solid diagonal lines from top to bottom). The upper
bounds depend on xH values and roughly scale as gX/|xH |
for |xH | " 3, while we find the LHC bound becomes weak
for xH ∼ −1 [23]. In the figure, we also plot the contours for
fixed ξ values. For xH = 0, the horizontal solid lines from
top to bottom correspond to ξ = 10, 1.0, 6.9 × 10−2, and
6.4 × 10−3 or equivalently, r =0.1, 0.01, 3.4 × 10−3, and
3.0× 10−3, respectively. The cyan shaded region is excluded
by the Planck 2018 measurement r > 0.064. As discussed
above, the inflationary predictions are almost independent of
xH for |xH | < 10 and the horizontal lines represent the re-
sults for any values of xH for |xH | < 10. Fig. 1 indicates
a complementarity between the LHC search for the Z ′ boson
resonance and the inflationary predictions.

Searching for the inflaton at the FASER: We are now
ready to discuss the inflaton search at the FASER and its com-
plementarity to the cosmological constraints on the inflation-
ary predictions. For a fixed ξ value, the inflationary predic-
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FIG. 2. The inflaton search reach at the FASER and the relation with
other observables.

tions are fixed and αX is determined as a function of mZ′ , in-
dependently of xH for |xH | < 10. As a result, both the mass
of inflaton (mφ) and its mixing angle with the SM Higgs field
(θ) are uniquely determined by the CW relations in Eqs. (6)
and (11), respectively.

In Fig. 2, we show our results in (mφ, θ)-plane, together
with the FASER search reach, the search reach of other
planned/proposed experiments (contours with the names of
experiments indicated), and the current excluded region (gray
shaded) from CHARM [24], Belle [25] and LHCb [26] ex-
periments, as shown in Ref. [3]. The diagonal dashed lines
correspond to ξ = 0.00642 (r = 0.064) and ξ = 0.00689
(r = 0.01), respectively, from left to right. The cyan shaded
region (r > 0.064) is excluded by the Planck 2018 results. We
find that the parameter region corresponding to the inflation-
ary prediction r ∼ 0.01 can be searched by the FASER 2 in
the future, a part of which is already excluded the Planck 2018
result. For a fixed mZ′ , we can obtain a relation between mφ

and θ through αX (recall, again, that this relation is almost
independent of xH values for |xH | < 10). In Fig. 2, the diag-
onal solid lines correspond to mZ′ [TeV] = 0.7, 1.0, 1.3, 2.6,
5.0, and 10, from top to bottom. A point on a solid line cor-
responds to a fixed value of ξ, or equivalently, r. Along each
line, the ξ (r) value increases (decreases) from left to right.
In Table III, for various mZ′ values, we have listed the range
of the predicted tensor-to-scalar ratio (r) which will be cov-
ered by the FASER. The blue shaded region (labeled ATLAS)
is excluded by the ATLAS result of the Z ′ boson search for
xH = 10, corresponding to the bottom solid line in Fig. 1.
The excluded regions for xH = −0.8 and xH = 0 (the B−L
model limit) correspond to θ > 10−3, and thus they are cov-
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One	more	important	constraint	which	is	not	taken	seriously
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the scalar part of the action

Sscalar =
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Here, ⇠ ⌘ �

4 � 1
6 parametrizes the nonminimal coupling

between the scalar field ' and the scalar curvature R.
The action (4) is recognized as that of the nonminimally
coupled �'4 model [26] and the prediction for the cosmo-
logical parameters is obtained in the standard slow roll
paradigm, after transforming it into the Einstein frame.
The inflaton field b' canonically normalized in the Ein-
stein frame is related to ' by the relation

db' =
MP

p
M2

P + ⇠'2(1 + 6⇠)

M2
P + ⇠'2

d'. (5)

The scalar potential in the Einstein frame is deformed by
the factor arising from the Weyl transformation as

VE(') =
y2

16

M4
P'

4

(M2
P + ⇠'2)2

. (6)

This potential is concave for not too small ⇠, giving the
observationally supported perturbation spectrum with
the suppressed tensor mode at the CMB scale. The
model has two tunable parameters ⇠ (or �) and y, but
with the normalization of the scalar perturbation ampli-
tude, there remains only one parameter degree of free-
dom. As ⇠ is increased from zero, the coupling y is also
increased towards a larger value. The predicted primor-
dial tilt ns and tensor-to-scalar ratio r are shown in Fig. 1
for di↵erent values of e-folding number Ne. It can be seen
that y & 10�6 ⇠ 10�5 is in good agreement with the
recent cosmological data. Note that y ⇠ 10�6 is not un-
naturally small from the phenomenological perspective,
as it is in the same order as the Standard Model electron
Yukawa coupling. The fact that the ‘self-coupling’ in the
potential (6) appears as y2, and not as y, is a salient fea-
ture of this supergravity inflation model which is in stark
contrast to the nonsupersymmetric counterpart. For ex-
ample, the Higgs inflation model [1, 2] requires a large
nonminimal coupling ⇠ ⇠ 104 in order to accommodate
the Standard Model Higgs self coupling, which led some
authors to worry about the unitarity issue [27–30] (see
however [31]). Since the self coupling is y2 in supergrav-
ity, this awkwardness, if it exists, may be easily avoided.

Gravitino problem.— Supergravity entails the grav-
itino, which is potentially harmful in cosmological sce-
narios [32–35] depending on its mass m3/2 = F/

p
3MP,

see e.g. [36]. A stable gravitino may be produced by the
decay of the inflaton, by the decay of a heavier supersym-
metric particle, or thermally produced via the freeze-in
mechanism. See [37] for the details of computations of
the thermal production rate. The stable gravitino in the
mass range 4.7 eV . m3/2 . 0.24 keV becomes a hot

or warm dark matter component, which is severely con-
strained by the analysis of small scale structure formation
[38, 39]. In the range 0.24 keV . m3/2 . 1GeV, the grav-
itino behaves as cold dark matter. The condition that the
Universe is not overclosed by the gravitino sets an upper
bound on the reheating temperature TR . 102 ⇠ 107

GeV, depending on the mass m3/2 [40]. The gravitino in
the range 1GeV . m3/2 . 1TeV is restricted due to light
element photodestruction. The overclosure bound for the
m3/2 & 1TeV gravitino dark matter gives TR . 109

GeV. The gravitino with m3/2 � 1TeV is likely to be
unstable. The condition that the successful big bang
nucleosynthesis is not jeopardized by the decay of the
gravitino gives a bound on the reheating temperature
TR . 105 ⇠ 109 GeV [41]. Extremely light, m3/2 .
eV, or extremely heavy, m3/2 & 107 GeV [42], gravitinos
are unconstrained. Although realizing such mass spec-
tra in a realistic supersymmetry breaking mechanism is
challenging, there exist possible scenarios, e.g. gravitino
dark matter at m3/2 & EeV discussed in [43–45].
Constraints from the reheating temperature.— Regard-

less of the details of the particle physics model that is
embedded in supergravity, the constraints from the grav-
itino problem are always present. The constraints give
an upper bound on the reheating temperature. It is thus
important to elucidate the relation between the reheating
temperature and the prediction for the cosmological pa-
rameters, whenever the viability of an inflationary model
is discussed within supergravity.
Assuming the standard thermal history of the Uni-

verse, inflation (accelerated cosmic expansion) ends1 at
time tend, followed by a period of (p)reheating character-
ized by the equation of state parameter w. The Universe
then thermalizes at time tth and becomes radiation dom-
inant2 until matter-radiation equality is reached at time
teq. After that the Universe stays matter dominated,
until today t0. The e-folding number Nk between the
horizon exit of the comoving wave number k and the end
of inflation is then expressed as [47, 48]
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1
We use the condition that one of the slow roll parameters

✏V = (M2
P/2)(VE,b'/VE)

2
or ⌘V = M2

PVE,b'b'/VE reaches unity,

namely, max(✏V, ⌘V) = 1 for the end of inflation. This is in good

agreement with the actual termination of accelerated cosmic ex-

pansion for the models studied here.
2
Strictly speaking, the completion of thermalization and the start

of radiation dominance (the end of reheating) are di↵erent, as

emphasized e.g. in [46]. However, the distinction has little sig-

nificance in our analysis due to the logarithmic dependance in the

equation (7). We thus assume in our analysis that the Universe

becomes radiation dominant immediately after thermalization.

The	relation	between	 	and	reheat	temperature:	Ne(Nk)

• 	is	the	coming	wave	number	of	CMB	at	the	horizon	exit	

• 	

• 	is	the	inflaton	potential	energy	at	the	CMB	horizon	exit	

• 	is	the	inflaton	energy	density	at	the	end	of	inflation	

• 	is	the	equation	of	state	for	the	evolving	inflaton	from	

the	end	of	inflation	to	the	reheating	time

k

ρth =
π2

90
g*T4

R

Vk

ρend

w
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The action (4) is recognized as that of the nonminimally
coupled �'4 model [26] and the prediction for the cosmo-
logical parameters is obtained in the standard slow roll
paradigm, after transforming it into the Einstein frame.
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This potential is concave for not too small ⇠, giving the
observationally supported perturbation spectrum with
the suppressed tensor mode at the CMB scale. The
model has two tunable parameters ⇠ (or �) and y, but
with the normalization of the scalar perturbation ampli-
tude, there remains only one parameter degree of free-
dom. As ⇠ is increased from zero, the coupling y is also
increased towards a larger value. The predicted primor-
dial tilt ns and tensor-to-scalar ratio r are shown in Fig. 1
for di↵erent values of e-folding number Ne. It can be seen
that y & 10�6 ⇠ 10�5 is in good agreement with the
recent cosmological data. Note that y ⇠ 10�6 is not un-
naturally small from the phenomenological perspective,
as it is in the same order as the Standard Model electron
Yukawa coupling. The fact that the ‘self-coupling’ in the
potential (6) appears as y2, and not as y, is a salient fea-
ture of this supergravity inflation model which is in stark
contrast to the nonsupersymmetric counterpart. For ex-
ample, the Higgs inflation model [1, 2] requires a large
nonminimal coupling ⇠ ⇠ 104 in order to accommodate
the Standard Model Higgs self coupling, which led some
authors to worry about the unitarity issue [27–30] (see
however [31]). Since the self coupling is y2 in supergrav-
ity, this awkwardness, if it exists, may be easily avoided.

Gravitino problem.— Supergravity entails the grav-
itino, which is potentially harmful in cosmological sce-
narios [32–35] depending on its mass m3/2 = F/

p
3MP,

see e.g. [36]. A stable gravitino may be produced by the
decay of the inflaton, by the decay of a heavier supersym-
metric particle, or thermally produced via the freeze-in
mechanism. See [37] for the details of computations of
the thermal production rate. The stable gravitino in the
mass range 4.7 eV . m3/2 . 0.24 keV becomes a hot

or warm dark matter component, which is severely con-
strained by the analysis of small scale structure formation
[38, 39]. In the range 0.24 keV . m3/2 . 1GeV, the grav-
itino behaves as cold dark matter. The condition that the
Universe is not overclosed by the gravitino sets an upper
bound on the reheating temperature TR . 102 ⇠ 107

GeV, depending on the mass m3/2 [40]. The gravitino in
the range 1GeV . m3/2 . 1TeV is restricted due to light
element photodestruction. The overclosure bound for the
m3/2 & 1TeV gravitino dark matter gives TR . 109

GeV. The gravitino with m3/2 � 1TeV is likely to be
unstable. The condition that the successful big bang
nucleosynthesis is not jeopardized by the decay of the
gravitino gives a bound on the reheating temperature
TR . 105 ⇠ 109 GeV [41]. Extremely light, m3/2 .
eV, or extremely heavy, m3/2 & 107 GeV [42], gravitinos
are unconstrained. Although realizing such mass spec-
tra in a realistic supersymmetry breaking mechanism is
challenging, there exist possible scenarios, e.g. gravitino
dark matter at m3/2 & EeV discussed in [43–45].
Constraints from the reheating temperature.— Regard-

less of the details of the particle physics model that is
embedded in supergravity, the constraints from the grav-
itino problem are always present. The constraints give
an upper bound on the reheating temperature. It is thus
important to elucidate the relation between the reheating
temperature and the prediction for the cosmological pa-
rameters, whenever the viability of an inflationary model
is discussed within supergravity.
Assuming the standard thermal history of the Uni-

verse, inflation (accelerated cosmic expansion) ends1 at
time tend, followed by a period of (p)reheating character-
ized by the equation of state parameter w. The Universe
then thermalizes at time tth and becomes radiation dom-
inant2 until matter-radiation equality is reached at time
teq. After that the Universe stays matter dominated,
until today t0. The e-folding number Nk between the
horizon exit of the comoving wave number k and the end
of inflation is then expressed as [47, 48]

Nk ⌘ ln
aend
ak

= 66.5� lnh� ln
k

a0H0
+

1� 3w

12(1 + w)
ln

⇢th
⇢end

+
1

4
ln

Vk

⇢end
+

1

4
ln

Vk

M4
P

+
1

12

�
ln geq⇤ � ln gth⇤

�
,

(7)

1
We use the condition that one of the slow roll parameters

✏V = (M2
P/2)(VE,b'/VE)

2
or ⌘V = M2

PVE,b'b'/VE reaches unity,

namely, max(✏V, ⌘V) = 1 for the end of inflation. This is in good

agreement with the actual termination of accelerated cosmic ex-

pansion for the models studied here.
2
Strictly speaking, the completion of thermalization and the start

of radiation dominance (the end of reheating) are di↵erent, as

emphasized e.g. in [46]. However, the distinction has little sig-

nificance in our analysis due to the logarithmic dependance in the

equation (7). We thus assume in our analysis that the Universe

becomes radiation dominant immediately after thermalization.

The	relation	between	 	and	reheat	temperature:	Ne(Nk)

Once	the	inflation	potential	is	determined,	we	have	a	relation	
between	e-folds	and	reheat	temperature.		

However,	this	formula	is	not	seriously	considered,	since	the	
reheating	temperature	is	undetermined	(free	parameter)	in	
usual	inflation	scenario	

So,	for	a	fixed	N_k,	we	adjust	T_R
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Inflaton/B-L	Higgs	decay	width

Therefore,	the	reheat	temperature	is	not	a	free	parameter,	but	
is	determined	by	gBL & vBL

Γϕ→H†H =
m4

h

8mϕv2
BL

Γϕ→SMSM = ΓSM(mh → mϕ) × sin θ2

mϕ > 2mh :

mϕ < 2mh :

We	estimate	the	reheating	temperature	by	

Γϕ = H(TR) =
ρth

3MP
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(Ne, gBL) ↔ (ns, r)
In	the	classically	conformal	B-L	model,	

Imposing	the	relation	between	e-folds	and	the	reheating	
temperature,	

(gBL, vBL) ↔ (ns, r)

We	have	one-to-one	correspondence	between	the	inflationary	
predictions	( )	and	( )ns, r gBL, vBL

*	Note	that	we	can	not	always	find	a	solution	for	a	set	of	( )gBL, vBL
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FIG. 3. The prediction of the U(1)B�L Higgs inflation model, with the requirement of the reheating consistency taken into
account. This is the m� > 2mh case of Fig. 1. The value of vBL is varied as 106, 107, 108, 109, 1010, 1011, 1012 GeV. The left
panel shows the scalar spectral index ns and the tensor-to-scalar ratio r. The right panel shows ns and the U(1)B�L coupling
gBL at the symmetry breaking minimum � = vBL. The end points marked with • correspond to the lower bound of gI , limited
by the m� > 2mh condition or the � < H? condition. The end points mark with � correspond to the upper bound of gI given
by the perturbativity condition. The background contours are the 68% and 95% confidence level Planck+BICEP/Keck 2018
results [31] (blue), and the LiteBIRD [32] (green) and CMB-S4 [33] (red) 1- and 2-� prospects for a fiducial model with r = 0.

namics is independent of the Standard Model Higgs field
during inflation, and we thus will not examine this case
further.

B. Numerical results

We thus discuss the results for the m� > 2mh case
below. Fig. 3 shows the solutions. The left panel is
the prediction for the CMB spectrum, the primordial
tilt ns against the tensor-to-scalar ratio r for the con-
sistent solutions as described above. The curves indi-
cate solutions for fixed values of vBL = 106 GeV to 1012

GeV and the background contours shaded in blue are the
68% and 95% confidence level constraints of the recent
Planck+BICEP/Keck 2018 constraints [31]. It is seen
that the prediction of the model comfortably sits inside
the 68% contour, up to vBL . 1012 GeV. The right panel
shows the same set of solutions on the ns-gI plane. In
both panels, the endpoints marked with a filled/black
circle correspond to the lower/upper bound of gI shown
on the left panel of Fig. 1. The vBL = 106 GeV solution
is seen to be trimmed by the �� < H? constraint, as one
can see by comparing with Fig. 1, left panel.

In Fig. 3, the prospect constraint contours by the Lite-
BIRD and CMB-S4, for a r = 0 fiducial model are shown
in green and red. The prediction of the cosmological
model studied here is clearly outside the 2-� contours,
and thus would be strongly disfavored if those projects
bring null results. If, on the other hand, the tensor
mode is detected, the measurements of the CMB spec-
trum would give significant constraints on the parameter
space of the U(1)B�L Higgs inflation model.

VI. FINAL REMARKS

We have examined the reheating process of the infla-
tionary scenario based on the U(1)B�L extension of the
Standard Model, and formulated the condition of consis-
tency in terms of the number of e-folds. We then solved
the equation of the inflationary dynamics along with the
RG equations to identify solutions that meet these re-
quirements. The results show that the predictions of the
CMB spectrum are in excellent agreement with current
observational constraints. It is also suggested that the
proposed model could be tested by future experiments,
such as LiteBIRD and CMB-S4. Our aim was to address
the previously overlooked aspects of model construction
and to provide a clearer prediction for cosmological ob-
servables by incorporating the consistency condition from
the reheating process.
The primary focus of this paper is the analysis of a

simple inflationary model, which is characterized by two
key parameters: the U(1)B�L breaking scale (vBL) and
the U(1)B�L gauge coupling (gI) at low energy. The
U(1)B�L extension of the Standard Model is a well-
motivated theory and this example may be considered
one of the most likely possibilities for cosmological model
building beyond the Standard Model. However, our
analysis can be extended to more involved cosmological
models. For instance, the U(1)B�L model can be ex-
tended to the U(1)X model that allows for the mixing
of U(1)B�L and U(1)Y gauge symmetries without vio-
lating the anomaly cancellation condition, as described
in [11]. Additionally, inflationary models based on su-
persymmetric extensions of the Standard Model, such
as those discussed in [34], may also be worthy of explo-

Results:	 	VS.	 	for	various	 	for	ns gBL vBL
gBL(μ = MP) < 1

mϕ > 2mh

*	Here,	we	have	considered	only	the	case	 ,	since	estimate	
of	the	reheating	temperature	is	not	easy	in	the	other	case.	

mϕ > 2mh

Kawai	&NO,	arXiv:	2303.00342
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namics is independent of the Standard Model Higgs field
during inflation, and we thus will not examine this case
further.

B. Numerical results

We thus discuss the results for the m� > 2mh case
below. Fig. 3 shows the solutions. The left panel is
the prediction for the CMB spectrum, the primordial
tilt ns against the tensor-to-scalar ratio r for the con-
sistent solutions as described above. The curves indi-
cate solutions for fixed values of vBL = 106 GeV to 1012

GeV and the background contours shaded in blue are the
68% and 95% confidence level constraints of the recent
Planck+BICEP/Keck 2018 constraints [31]. It is seen
that the prediction of the model comfortably sits inside
the 68% contour, up to vBL . 1012 GeV. The right panel
shows the same set of solutions on the ns-gI plane. In
both panels, the endpoints marked with a filled/black
circle correspond to the lower/upper bound of gI shown
on the left panel of Fig. 1. The vBL = 106 GeV solution
is seen to be trimmed by the �� < H? constraint, as one
can see by comparing with Fig. 1, left panel.

In Fig. 3, the prospect constraint contours by the Lite-
BIRD and CMB-S4, for a r = 0 fiducial model are shown
in green and red. The prediction of the cosmological
model studied here is clearly outside the 2-� contours,
and thus would be strongly disfavored if those projects
bring null results. If, on the other hand, the tensor
mode is detected, the measurements of the CMB spec-
trum would give significant constraints on the parameter
space of the U(1)B�L Higgs inflation model.

VI. FINAL REMARKS

We have examined the reheating process of the infla-
tionary scenario based on the U(1)B�L extension of the
Standard Model, and formulated the condition of consis-
tency in terms of the number of e-folds. We then solved
the equation of the inflationary dynamics along with the
RG equations to identify solutions that meet these re-
quirements. The results show that the predictions of the
CMB spectrum are in excellent agreement with current
observational constraints. It is also suggested that the
proposed model could be tested by future experiments,
such as LiteBIRD and CMB-S4. Our aim was to address
the previously overlooked aspects of model construction
and to provide a clearer prediction for cosmological ob-
servables by incorporating the consistency condition from
the reheating process.
The primary focus of this paper is the analysis of a

simple inflationary model, which is characterized by two
key parameters: the U(1)B�L breaking scale (vBL) and
the U(1)B�L gauge coupling (gI) at low energy. The
U(1)B�L extension of the Standard Model is a well-
motivated theory and this example may be considered
one of the most likely possibilities for cosmological model
building beyond the Standard Model. However, our
analysis can be extended to more involved cosmological
models. For instance, the U(1)B�L model can be ex-
tended to the U(1)X model that allows for the mixing
of U(1)B�L and U(1)Y gauge symmetries without vio-
lating the anomaly cancellation condition, as described
in [11]. Additionally, inflationary models based on su-
persymmetric extensions of the Standard Model, such
as those discussed in [34], may also be worthy of explo-

Results:	Inflationary	predictions	for	various	vBL

• Theoretically	consistent	region	is	very	restricted		
• 106 ≲ vBL[GeV] ≲ 1012

Kawai	&NO,	arXiv:	2303.00342
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Exploring	Early	Universe	(Beyond	the	SM	(BSM)	in	cosmology)

GWs	carry	the	information		
from	the	“earliest	Universe”!	

GW	detections	as	a	probe	of	BSM!

Detection	of	GWs

• Indirect:	B-mode	polarization	of	CMB	(GWs	from	inflation)	
																			Pulsar	timing	arrays:	GW	effects	on	pulsar	timing						

• Direct:	Interferometers	

II Theory and Background

Laser source

Mass

Mass

Photosensor
Interference pattern

Figure II.7: Schematic of a Michelson interferometer.

featuring the second time derivative of the quadrupole tensor

Qij(t) =
Z

d3x0 T00(t, x0)x0ix0j. (II.60)

This is an interesting outcome and reveals the nature of GW sources: They are time-
dependent and anisotropic (non-spherical) motions of mass, where only the second
and higher orders of the multipole expansion contribute. GWs carry energy and one
can show that the corresponding energy-momentum tensor is given by

TGW
µ⌫ =

1

32⇡G
D
@µhTT

ij @⌫hij
TT

E
(II.61)

with time average h•i. By integrating the energy flow TGW
0i over a spherical surface,

the luminosity

L =

Z
dAiTGW

0i =
G
5

D ...
QTT

ij
...
Q ij

TT
E

(II.62)

is obtained, i.e. the total amount of energy radiated by a quadrupole source per time.
The TT representation QTT

ij = Qij – 1
3�ijQk

k is used at this point.

Detection

The basic concept of GW observation is simple and just requires placing a ruler next to
two test masses. This is basically what a Michelson interferometer does (see Fig. II.7):
Monochromatic laser light is split up by a beam splitter into orthogonal directions.
Both partial beams are then reflected by freely floating test masses at a certain dis-
tance. After passing through the splitter a second time, the two beams interfere with
each other. A change in the interference pattern signals a changing interferometer arm
length which can be caused by traversing GWs. The incredible smallness of strain h
makes it however extremely difficult to distinguish an actual signal from thermal, seis-

26
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GW150914	detection	at	LIGO	has	opened	up	a	possibility	
to	detect	GWs	in	a	variety	of	frequencies.
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1.	Primordial	GW	from	U(1)x	Higgs	Infaltion	

Even	for	 (beyond	the	LHC	energy	),	as	long	as	 ,	
the	U(1)x	Higgs	inflation	with	non-minima	gravitational	coupling	is	a	
perfectly	conceited	with	the	observations																							

vX ≫ 1 TeV vX ≪ MP

32

Inflationary	Predictions	VS	Planck+BK18+BAO	results		

• Once	 	is	fixed,	only	1	free	parameter	( )	determines	the	predictions	
• Predicted	GWs	are	

Ne ξ
r ≳ 0.003

Future	experiments	(CMB-S4,	LiteBIRD)	will	cover	the	region!

BK18+Planck+BAO

Stage 3

LiteBIRD

CMB-S4

0.94 0.95 0.96 0.97 0.98 0.99

310-4

0.001

0.003

0.01

0.03

0.1

ns

rr

ns

Ne = 50 60 70

ξ ≫ 1

ξ = 0

ξ ns r λΦ
0.0164 0.962 0.036 1.57× 10−12

0.0745 0.964 0.011 8.38× 10−12

1 0.965 0.00408 5.23× 10−10

10 0.965 0.00356 4.54× 10−8

100 0.965 0.00350. 4.47× 10−6

1000 0.965 0.00350 4.46× 10−4

104 0.965 0.00350 4.46× 10−2

Table 2: Inflationary predictions for various benchmark ξ values and N = 55. Values of
ξ < 0.0134 (r > 0.036) are excluded by the Bicep/Keck results [50]. In our scenario, λ126(φI) =
O(0.1) is required (see text for details).

The inflationary predictions for the tensor-to-scalar ratio (r), spectral index (ns), and run-
ning of the spectral index (α = dns

d ln k ) are given by

r = 16ε, ns = 1− 6ε+ 2η, α= 16εη − 24ε2 − 2ζ, (5.7)

where all the three slow-roll parameters are evaluated at φ = φI . For a fixed N value, sub-
stituting for ∆2

R in Eqs. (5.5) and (5.6), the quantities λΦ, φI and φE (and therefore all the
inflationary predictions) are determined as a function of the non-minimal gravitational coupling
ξ. The results for N = 55 are summarized in Table 2. The values of ξ < 0.0134 (r > 0.036)
are excluded by the Bicep/Keck results [50]. The inflationary predictions for ns, r, and α
rapidly approach their asymptotic values for ξ ! 1, for example, see Fig. 5. We also find that
φI # MPS, which justifies the approximation used in Eq. (5.2).

After the end of inflation, the inflaton field rolls down to the potential minimum where it
oscillates and decays to the SM particles to reheat the universe. For fixed values of N and ξ,
the reheat temperature TR is determined as [51]7

N $ 51.4 +
2

3
ln

(
VE(φI)

1015 GeV

)
+

1

3
ln

(
TR

107 GeV

)
. (5.8)

If the reheat temperature TR > MPS, the PS symmetric vacuum gets restored during reheating
and its subsequent breaking produces unacceptably large number of monopoles. To avoid this
problem, we impose TR well below MPQ for the rest of our analysis, namely,TR < 10−2MPS. In
Sec. 3, we have found the maximum value of MPS ≈ 1012 GeV, so that the maximum reheating
temperature TR = 1010 GeV.

In Fig. 5 we show the results for TR, nS and r for N = 50 and 55. The top-left panel shows
r as a function of ξ. The shaded region is excluded by the combination of the BICEP2/Keck
Array (BK18) experiments and Planck 2018 [53]. The top-right panel in Fig. 5 shows that
N ! 55 is excluded (gray shaded region) in order to prevent the restoration of PS symmetry.
The bottom panel in Fig. 5 shows the inflationary predictions for the same N values along with
the current best constraints from the combination of the BICEP2/Keck Array 2018 experiments

7See Ref. [54] for a more precise formula.

16

Ne = 55
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2.	GWs	from	1st	order	phase	transition

There	are	many	well-motivated	models	beyond	the	SM,	
in	which	the	SM	gauge	symmetry	is	extended.	

We	naturally	expect	that	the	universe	experienced	some	
phase	 transitions	 associated	 with	 the	 extended	 gauge	
symmetry	 breaking,	 in	 addition	 to	 the	 electroweak	 &	
QCD	phase	transitions	in	the	SM.	

If	a	gauge	symmetry	breaking	exhibits	1st	order	phase	
transition,	we	may	expect	a	large	amplitude	of	GWs	
created	by	bubble	dynamics.	

Our	case:	GWs	from	U(1)x	symmetry	breaking
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1st	order	phase	transitionSymmetry 2020, 12, 733 4 of 24

Figure 1. Two types of phase transitions. (Upper) Case of the first-order phase transition; shapes of
the effective potential at T > TC, T = TC and T < TC [left panel] and the temperature evolution of the
VEV of scalar [right panel]. (Lower) Counterparts in the case of the second-order phase transition.

Before we discuss EWPT, we consider the f4 theory in order to see the symmetry behavior at
high-T. The Lagrangian is given by

L =
1
2

∂µ j∂µ j � V0(j), V0(j) = �
m2

2
j2 +

l

4!
j4, (7)

where l > 0 and m2
> 0. This model has the Z2 symmetry, j ! �j, but it is spontaneously

broken because of the �m2 term. The field-dependent scalar mass is derived by m̄2 = ∂2V0/∂j2 =
�m2 + lj2/2. The one-loop effective potential in the MS scheme takes the form

V1(j; T) =
m̄4

64p2

✓
ln

m̄2

µ̄2 �
3
2

◆
+

T4

2p2 IB(a2), (8)

where µ̄2 = 4pe�gE µ2 with gE being the Euler constant. Combining this with V0(j), one finds

Veff(j; T) = V0(j) + V1(j; T)

' �
p2T4

90
+

1
2

✓
�m2 +

l

24
T2

◆
j2

�
T

12p
(m̄2)3/2 +

l

4!
j4 +

m̄4

64p2

✓
ln

T2

µ̄2 + 2cB

◆
, (9)

where cB = ln aB/2 and HTE is used in the second line. One can find that the Z2 symmetry can be
restored at high temperature due to the positive contribution of the O(T2) term. Presence of the (m̄2)3/2

Tn

Bubble	nucleation	occurs	at	 	(nucleation	temp)	
if	the	condition	is	satisfied:

Tn

Γ(Tn) ∼ T4
ne−S3/Tn ∼ H(Tn)4

Thermal	bubble	nucleation	rate/vol

Vacuum Decay & Bubble Nucleation

Bubble nucleation rate vs. Expansion of Universe
� ⇠ e�S3/T H

�H�4 !⇠ 1

Nucleation criterion
S3/Tn ⇠ 140 5

- Friedmann equation
- Universe radiation dominated
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Theory	background:	finite-temperature	field	theory	

U(1)B−L symmetry breaking vacuum, the B −L Higgs field develops the VEV, and the RH

neutrinos N i
R and the B − L gauge boson (Z ′ boson) acquire their masses, respectively, as

mN i
R
=
YN i√
2
v2, (24)

m2
Z′ =4g2B−Lv

2
2, (25)

where gB−L is the U(1)B−L gauge coupling and v2 is defined as 〈Φ2〉 = v2/
√
2. Then,

the tree level B − L Higgs boson mass is given as m2
Φ2

= λ2v22. Note the LEP constraint

mZ′/gB−L ! 6 TeV [44, 45] and the constraint from the LHC Run 2 on the search for a

narrow resonance (see, for example, Refs. [46–49])

mZ′ ! 3.9 TeV, (26)

for gB−L % 0.7.

In the minimal B−L model, one-loop quantum corrections to the scalar potential for both

zero and finite temperature are essential for realizing the first-order phase transition. For our

numerical calculations, we have implemented our minimal U(1)B−L model into the public

code CosmoTransitions [50], where both zero- and finite-temperature one-loop effective

potentials5 [51],

Veff(ϕ, T ) = V0(ϕ) +∆V1−loop(ϕ) +∆VT (ϕ, T ), (27)

with Φ2 = ϕ/
√
2, have been calculated in the MS renormalization scheme at a renormaliza-

tion scale Q2 = v22. In the following calculations, we assume YN i & gB−L, for simplicity, and

neglect quantum corrections through neutrino Yukawa couplings YN i. Thus, the effective

potential (27) is described by only three free parameters, gB−L,λ2 and MΦ2
. In our analysis,

we use v2 instead of MΦ2
.

B. Parameter dependence

We now show a dependence of our results on three free parameters: gB−L,λ2, and v2.

At first, we focus on the gauge coupling dependence of the resultant GW spectrum. The

Ref. [43].
5 As one might know, the use of the effective Higgs potential holds the issue of gauge dependence in the

results [52]. Since resolution to this issue is under development, we adopt the effective potential technique.
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• Tree-level	potential:	V0(φ)

• 1-loop	effective	potential:

The U(1)X Higgs field is expanded around its VEV (v2) as

Φ2 =
v2 + φ2 + iχ2√

2
. (21)

The scalar masses are expressed as

m2
φ2

=−M2
Φ2

+
3λ2

2
v22, (22)

m2
χ2

=−M2
Φ2

+
λ2

2
v22. (23)

At the classical minimum with v2 =
√

2M2
Φ2
/λ2, χ2 is the would-be Nambu-Goldstone mode

eaten by the U(1)X gauge boson (Z ′ boson) and m2
φ2

= λ2v22 . The RH neutrinos N i
R and

the Z ′ boson acquire their masses as

mN i
R
=
YN i√
2
v2, (24)

m2
Z′ =q2Φ2

g2X v22. (25)

One-loop corrections to the scalar potential for both zero and finite temperatures are

essential for realizing the first-order phase transition. One-loop correction is given by

∆V1−loop(ϕ) =
∑

s

gs
m4

s

64π2

(

ln
m2

s

Q2
− cs

)

−
∑

f

gf
m4

f

64π2

(

ln
m2

f

Q2
− cf

)

+
∑

v

gv
m4

v

64π2

(

ln
m2

v

Q2
− cv

)

. (26)

Here, gi, with i = s (scalars), f (fermions) and v (vectors) denotes the number of internal

degrees of freedom, ci = 5/6 (3/2) is a constant for a vector boson (a scalar or a fermion), and

Q is the renormalization scale. The finite temperature correction to the effective potential

is expressed by

∆VT (ϕ) =
∑

s

gs
T 4

2π2
JB(m

2
s/T

2)−
∑

f

gf
T 4

2π2
JF (m

2
f/T

2) +
∑

v

gv
T 4

2π2
JB(m

2
v/T

2), (27)

where JB(F ) is an auxiliary function in thermal corrections (see e.g. Refs. [74, 75]).

We include the thermal correction to masses of φ2, χ2 and the Z ′ boson as given by

∆m2
φ2/χ2

=
q2Φ2

4
g2χT

2 +
λ2

6
T 2 +

∑

N

|YN |2

24
T 2, (28)

∆m2
Z′

L
=
∑

Φ

NΦq
2
Φ

g2χ
6
T 2 +

∑

f

Nc(q
2
Lf + q2Rf )

g2χ
6
T 2, (29)

11

• Finite	temperature	corrections	to	the	effective	potential:

The U(1)X Higgs field is expanded around its VEV (v2) as

Φ2 =
v2 + φ2 + iχ2√

2
. (21)

The scalar masses are expressed as

m2
φ2

=−M2
Φ2

+
3λ2

2
v22, (22)

m2
χ2

=−M2
Φ2

+
λ2

2
v22. (23)

At the classical minimum with v2 =
√

2M2
Φ2
/λ2, χ2 is the would-be Nambu-Goldstone mode

eaten by the U(1)X gauge boson (Z ′ boson) and m2
φ2

= λ2v22 . The RH neutrinos N i
R and

the Z ′ boson acquire their masses as

mN i
R
=
YN i√
2
v2, (24)

m2
Z′ =q2Φ2

g2X v22. (25)

One-loop corrections to the scalar potential for both zero and finite temperatures are

essential for realizing the first-order phase transition. One-loop correction is given by

∆V1−loop(ϕ) =
∑

s

gs
m4

s

64π2
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ln
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s

Q2
− cs

)

−
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f
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64π2
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ln
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f

Q2
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)

+
∑

v
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m4

v

64π2

(
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v

Q2
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)

. (26)

Here, gi, with i = s (scalars), f (fermions) and v (vectors) denotes the number of internal

degrees of freedom, ci = 5/6 (3/2) is a constant for a vector boson (a scalar or a fermion), and

Q is the renormalization scale. The finite temperature correction to the effective potential

is expressed by

∆VT (ϕ) =
∑

s

gs
T 4

2π2
JB(m

2
s/T

2)−
∑

f

gf
T 4

2π2
JF (m

2
f/T

2) +
∑
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2π2
JB(m

2
v/T

2), (27)

where JB(F ) is an auxiliary function in thermal corrections (see e.g. Refs. [74, 75]).

We include the thermal correction to masses of φ2, χ2 and the Z ′ boson as given by

∆m2
φ2/χ2

=
q2Φ2

4
g2χT

2 +
λ2

6
T 2 +

∑
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|YN |2
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T 2, (28)

∆m2
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=
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Φ

NΦq
2
Φ
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6
T 2 +
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f

Nc(q
2
Lf + q2Rf )

g2χ
6
T 2, (29)

11

JB,F(y2) = ∫
∞

0
dxx2 log [1 ∓ e− x2 + y2]
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Classically	conformal	model	is	suitable	for	getting	a	strong	
1st	order	phase	transition
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Phase	transition	analysis

Γ(T ) ∼ T4e−S3/T
• Thermal	bubble	nucleation	rate/vol

• 3-D	Euclidean	action

S3 = 4π∫
∞

0
dr r2 [ 1

2 ( dφ(r)
dr ) + V(φ, T )]

d2φ
dr2

+
2
r

dφ
dr

= V′ 	with	a	bounce	solution	of		

lim
r→∞

φ(r) = 0 & lim
r→0

dφ(r)
dr

= 0

Γ(Tn) ∼ T4
ne−S3/Tn ∼ H(Tn)4	We	fix	 	byTn



70

Characterizing	the	GW	spectrum

• Nucleation	temperature:	Tn

• Phase	transition	strength: α =
Δρ(Tn)
ρrad(Tn)

• Hubble	normalized	transition	time	scale:
β

H(Tn)
= T

d(S3/T )
dT T=Tn

• Bubble	wall	velocity:	 vb

GW	spectrum

place [36]. On the other hand, the radiation energy density is given by

ρrad =
π2g∗
30

T 4, (2)

with g∗ being the total number of relativistic degrees of freedom in the thermal plasma. The

parameter α is defined by

α ≡
ε

ρrad
. (3)

The bubble nucleation rate per unit volume at a finite temperature is given by

Γ(T ) = Γ0e
−S(T ) " Γ0e

−S3
E
(T )/T . (4)

Here, Γ0 is a coefficient of the order of the transition energy scale, S is the action in the

four-dimensional Minkowski space, and S3
E is the three-dimensional Euclidean action [20].

The transition timescale is characterized by a dimensionless parameter

β

H!
" T

dS

dT

∣

∣

∣

∣

T!

= T
d(S3

E/T )

dT

∣

∣

∣

∣

T!

, (5)

with

β ≡ −
dS

dt

∣

∣

∣

∣

t!

. (6)

B. GW spectrum

Here, we briefly note formulas of generated GW by each of three sources: bubble collisions,

turbulence, and sound waves after bubble collisions. The final spectrum is expressed, by

taking the sum of all three, as

ΩGW (f) = Ωcoll
GW (f) + Ωsw

GW (f) + Ωturb
GW (f), (7)

in terms of the density parameter. For information, we find that the bubble collision con-

tribution is negligible, the sound wave is the dominant source, and turbulence gives a high

frequency tail in the spectrum, as GWs generated by a first-order phase transition in many

other models.

4

from	3	main	sources:	bubble	collisions	(coll),	sound	waves	(sw)	
after	bubble	collisions,	and	turbulence	(turn)	

Fitting	formulas	for	the	spectrum	are	obtained	by	simulations
Huber	et	al.,	0806.1828;	Hindmarsh	et	al.,	1504.03291;	Caprini	et	al.,	0909.0622,	..
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Minimal	U(1)x	Model	(xH = − 4/5)
NO,	Seto	&	Uchida	(2021)

• Probing	the	seesaw	scale	with	GWs	from	1st	order	PT!	
even	if	 LHC	energy	scale		

• 	for	detection
vX ≫

vX ≲ 105 TeV
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FIG. 2: The predicted GW spectrum for various symmetry breaking scales for λ2 = 6 × 10−4.

The difference of the symmetry breaking scale is indicated by colors as shown in the legends. Black

solid curves are the expected sensitivities of each indicated experiments derived in Ref. [93].
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FIG. 3: The predicted GW spectrum for various values of YN and λ2 for gχ = 0.463 and v2 = 1

PeV. Parameters in the legend denote (YN ,λ2 × 103).

18

λΦ = 6 × 10−6

αX ≃ 0.016vX
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• The	classically	conformal	gauged	U(1)	B-L	( )	

extended	SM	can	solve	several	problems	of	the	SM:

U(1)X

What	drives	Electroweak	Symmetry	Breaking?		

Why	are	Neutrino	Masses	are	non-zero	and	so	tiny?	

What	is	the	nature	of	Dark	Matter?	

What	drives	Cosmic	Inflation	before	Big	Bang?	

What	is	the	origin	of	Matter-Antimatter	asymmetry	

in	the	Universe?
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• In	the	model,	physics	is	controlled	by	only	2	(3)	free	
parameters:	 	( )	

• Inflaton	with	 	can	be	searched	by	
FASER.	This	search	is	complementary	with	CMB	
measurements.		

• In	the	U(1)	Higgs	inflation	scenario,	the	reheating	
temperature	is	not	a	free	parameter,	and	thus	the	
inflationary	predictions	( )	are	determined	by	
( ).		

• More	precise	measurements	of	( )	can	exclude	the	
model	or	pin	down	( )	values.		

• Gravitational	wave	prob	of	the	classically	conformal	
extended	SM	even	if	U(1)	symmetry	breaking	scale	
exceeds	the	LHC	energy

gBL & vBL gBL & vBL & xH
0.3 ≲ mϕ[GeV] ≲ 3

ns, r
gBL, vBL

ns, r
gBL, vBL
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Thank you

for your attention!


