Noncommutative space in quantum theory
references:
arXiv:hep-th/9912072
arXiv:hep-th/0007046

In quantum mechanics, the canonical variables $\left\{x^{i}, i=1,2,3\right\}$ with their conjugate momenta $\left\{p_{j}, j=1,2,3\right\}$ are operators satisfying the commutation relations

$$
\left[x^{i}, p_{j}\right]=i \hbar \delta_{j}^{i}
$$

the classical limit is recovered by setting $\hbar \rightarrow 0$.
This is the quantization of the phase space.


What about the quantization of geometry of space itself? This idea was implemented by Snyder's work in 1947. PHYSICAL REVIEW

VOLUME 71, NUMBER 1
Quantized Space-Time
Hartland S. Snyder
Department of Physics, Northwestern University, Evanston, Illinois (Received May 13, 1946)

It is usually assumed that space-time is a continuum. This assumption is not required by Lorentz invariance. In this paper we give an example of a Lorentz invariant discrete space-time.

The quantization of spacetime $\Rightarrow$ noncommutative spacetime replacing the spacetime coordinates by the Hermitian operators

$$
\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}
$$

where $\theta^{\mu r}$ is the real antisymmetric matrix.
 spacetime

One of motivations to introduce the noncommutative space is trying to overcome the difficulty of UV divergence in quantum field theory.

$$
U V \text { cutoff } \longrightarrow \Lambda_{U V} \sim \theta^{\frac{1}{2}}
$$

General relativity at the Planck length scale $l_{p}$ ?
At the $l_{p}$, the quantum effect will play an important role. It is conjuctured that the classical continuum of spacetime structure might be broken down at the Planck length scale.

How to apply to the non commutativity $\Rightarrow$ Star product

The algebra of functions on the nc-space is realized by replacing the ordinary product among functions by the noncommutative star product

$$
(f * g)(x)=\left.\exp \left\{\frac{i}{2} \theta^{\mu \nu} \frac{\partial}{\partial x_{1}^{m}} \frac{\partial}{\partial x_{2}^{\prime}}\right\} f\left(x_{1}\right) g\left(x_{2}\right)\right|_{x_{1}=x_{2}=x}
$$

Consider a simple quantum mechanical system consisting of one particle in a potential $V(x, y)$ which is described by the action

$$
S=\int d t d x^{2} \bar{\psi}\left[i \frac{\partial}{\partial t}-\frac{\vec{p}^{2}}{2 m}-V(x, y)\right] \psi(t, x, y)
$$

The corresponding equation of motion is the Schrodinger equation

$$
i \hbar \frac{\partial}{\partial t} \psi(t, x, y)=\left[\frac{\hat{\vec{p}}^{2}}{2 m}+V(x, y)\right] \psi(t, x, y)
$$

Impose the noncommutative conditions on the coordinates

$$
\left[x^{i}, x^{j}\right]=i \theta \epsilon^{i j}, \quad i, j=1,2
$$

with $\epsilon^{12}=1$.
Under the star product, one gets

$$
\begin{aligned}
V(\vec{x}) * \psi(\vec{x})= & V(\vec{x})+\sum_{n=1}^{\infty} \frac{1}{n!}\left(\frac{i}{2}\right)^{n} \partial_{i_{1}} \cdots \partial_{i_{n}} V(\vec{x}) \\
& \theta^{i_{1} j_{1}} \ldots \theta^{i_{n} j_{n}} \partial_{j_{1}} \cdots \partial_{j_{n}} \psi(\vec{x})
\end{aligned}
$$

Since $p_{i_{k}}=-i \frac{\partial}{\partial x^{i_{k}}}$, and

$$
V(\vec{x})=\int d^{2} k e^{i \vec{k} \cdot \vec{x}} V(\vec{k})
$$

introduce the notation $\tilde{p}_{i_{k}}=\theta^{i_{k} j_{k}} p_{j_{k}}$, one gets

$$
\begin{aligned}
& \partial_{i_{1}} \cdots \partial_{i_{n}} V(\vec{x}) \theta^{i_{1} j_{1} \ldots} \theta^{i_{n} j_{n}} \partial_{j_{1}} \cdots \partial_{j_{n}} \psi(\vec{x}) \\
= & i^{n} \int d^{2} x e^{i \vec{k} \cdot \vec{x}} V(\vec{k})\left(\vec{k} \cdot \overrightarrow{{ }_{p}^{x}}\right)^{n} \psi(\vec{x})
\end{aligned}
$$

Then,

$$
\begin{aligned}
V(\vec{x}) * \psi(\vec{x}) & =\int d^{2} k e^{i \vec{k} \cdot \vec{x}} e^{\frac{i}{2} \vec{k} \cdot \vec{p}} V(\vec{k}) \psi(\vec{x}) \\
& =V\left(\vec{x}-\frac{1}{2} \vec{p}\right) \psi(\vec{x})
\end{aligned}
$$

where $\vec{k} \cdot \vec{k}=0$ and $\left[x_{i}, p_{j}\right]=i \delta_{i j}$ have been used.

$$
\text { if } \quad H=\frac{\vec{p}^{2}}{2 m}+V(x) \rightarrow \begin{aligned}
& \text { interaction } \\
& \text { in } x \text {-direction }
\end{aligned}
$$

\|. noncommutative space

$$
\begin{gathered}
H_{n c}=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+V\left(x-\frac{1}{2} \theta p_{y}\right) \\
\psi(x, y)=\phi(x) e^{i k y}
\end{gathered}
$$

For example, if there is only the harmonic oscillation in the $x$-direction, and

$$
[x, y]=i \theta
$$

then

$$
H_{n c}=\frac{1}{2 m} p_{x}^{2}+\frac{k}{2}\left(x-\frac{1}{2} \theta p_{y}\right)^{2}
$$

this is the Hamiltonian of a charged particle in the constant magnetic field in the $z$-direction with

$$
B_{z}=\frac{2}{q \theta}, \quad m=\frac{4}{k \theta^{2}}
$$

in the Landau gauge

$$
\vec{A}=B_{z} x \hat{y}
$$

To see this, expand

$$
\begin{aligned}
H_{B} & =\frac{1}{2 m}(\vec{p}-q \vec{A})^{2} \\
& =\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)-\frac{q}{m} \overrightarrow{p_{p}} \cdot \vec{A}+\frac{q^{2}}{2 m} \vec{A}^{2} \\
& =\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)-\frac{q B_{z}}{m} x p_{y}+\frac{q^{2} B_{z}^{2}}{2 m} x^{2}
\end{aligned}
$$

Next consider a scalar field theory on the noncommutative space. For the quadratic part,

$$
\begin{aligned}
\int d^{D} x \phi * \phi & =\int d^{D} x \phi^{2} \\
\int d^{D} x \partial \phi * \partial \phi & =\int d^{D} x(\partial \phi)^{2}
\end{aligned}
$$

The interations

$$
\mathscr{L}_{I}=\sum_{n=3} a_{n} g^{n-2} \phi^{n}
$$

are modified under the star product. The noncommutative interaction vertex of $\phi^{n}$ has an extra factor

$$
V_{n c}\left(k_{1}, \cdots, k_{n}\right)=\exp \left\{-\frac{i}{2} \sum_{i<j} k_{i} \tilde{k_{j}}\right\}
$$

where

$$
k_{i} \widetilde{k_{j}}=\left(k_{i}\right)_{\mu} \theta^{\mu r}\left(k_{j}\right)_{r}
$$

In the non commutative field theory, $\phi$ can be regarded as a matrix. Consider the $\phi^{4}$ theory on the noncommutative Eucliean space $\mathbb{R}^{4}$ with the action

$$
S=\int d^{4} x\left[\frac{1}{2}\left(\partial_{m} \phi\right)^{2}+\frac{1}{2} m^{2} \phi^{2}+\frac{1}{4!} g^{2} \phi * \phi * \phi * \phi\right]
$$

Denote the 1-particle-irreducible two point function as PIPI. At the level,

$$
\Gamma_{\mathbb{P I}}^{(0)}=p^{2}+m^{2}
$$

At the 1-loop level, in addition to the planar diagram, there is a nonplanar diagram,
planar

nonplanar


When $\theta=0$, these two diagrams are same (up to a symmetry factor). For $\theta \neq 0$,

$$
\begin{aligned}
& \Gamma_{\mathbb{P I}}^{(1) \text { planar }}=\frac{g^{2}}{3(2 \pi)^{4}} \int \frac{d^{4} k}{k^{2}+m^{2}} \\
& \Gamma_{\mathbb{P I}}^{(1) \text { non planar }}=\frac{g^{2}}{6(2 \pi)^{4}} \int \frac{d^{4} k}{k^{2}+m^{2}} e^{i k \tilde{p}}
\end{aligned}
$$

Use the Schwinger parameter representation of the integral,

$$
\frac{1}{k^{2}+m^{2}}=\int_{0}^{\infty} d \lambda e^{-\lambda\left(k^{2}+m^{2}\right)}
$$

then one gets

$$
\begin{aligned}
& \Gamma_{I P I}^{(1) \text { planar }}=\frac{9}{48 \pi^{2}} \int \frac{d \lambda}{\lambda^{2}} e^{-\lambda m^{2}} \\
& \Gamma_{1 P I}^{(1) \text { non planar }}=\frac{g^{2}}{96 \pi^{2}} \int \frac{d \lambda}{\lambda^{2}} e^{-\lambda m^{2}-\frac{1}{\lambda} p \cdot p}
\end{aligned}
$$

where

$$
p \circ q=\left|p_{\mu} \theta^{\mu \nu} q_{\nu}\right|
$$

To regulate $\lambda \rightarrow 0$ divergence, introduce the cutoff $\Lambda$ with $\exp \left\{-\frac{1}{\Lambda^{2} \lambda}\right\}$, then

$$
\begin{aligned}
& \Gamma_{I P I}^{(1) \text { planar }}=\frac{9}{48 \pi^{2}} \int \frac{d \lambda}{\lambda^{2}} e^{-\lambda m^{2}-\frac{1}{\Lambda^{2} \lambda}} \\
& \Gamma_{I P I}^{(1) \text { nonplanar }}=\frac{g^{2}}{96 \pi^{2}} \int \frac{d \lambda}{\lambda^{2}} e^{-\lambda m^{2}-\frac{1}{\lambda}\left(p \circ p+\frac{1}{\Lambda^{2}}\right)}
\end{aligned}
$$

and one gets

$$
\begin{aligned}
& \Gamma_{\mathbb{P I}}^{(1) \text { planar }}=\frac{9^{2}}{48 \pi^{2}}\left[\Lambda^{2}-m^{2} \ln \frac{\Lambda^{2}}{m^{2}}+O(1)\right] \\
& \Gamma_{I P I}^{(1) \text { nonplanar }}=\frac{g^{2}}{96 \pi^{2}}\left[\Lambda_{\text {eff }}^{2}-m^{2} \ln \frac{\Lambda_{\text {eff }}^{2}}{m^{2}}+O(1)\right]
\end{aligned}
$$

With

$$
\Lambda_{\text {eff }}^{2}=\frac{1}{\Lambda^{-2}+p_{0 p}}
$$

The one loop effective action is

$$
\begin{aligned}
S_{\mathbb{P I}}^{(1)}= & \int d^{4} p \frac{1}{2}\left\{p^{2}+M^{2}+\frac{g^{2}}{96 \pi^{2}\left(p o p+\Lambda^{-2}\right)}\right. \\
& \left.-\frac{g^{2} M^{2}}{96 \pi^{2}} \ln \left[\frac{1}{M^{2}\left(p o p+\Lambda^{-2}\right)}\right]+\cdots+O\left(g^{4}\right)\right\} \phi(p) \phi\left(-p^{2}\right)
\end{aligned}
$$

with

$$
M^{2}=m^{2}+\frac{g^{2} \Lambda^{2}}{48 \pi^{2}}-\frac{g^{2} m^{2}}{48 \pi^{2}} \ln \frac{\Lambda^{2}}{m^{2}}+\cdots
$$

For pop $\ll \Lambda^{-2}$, the effective action in the commutative case is recoverved,

$$
S_{I P I}^{(1) \text { commutative }}=\int d^{4} p \frac{1}{2}\left(p^{2}+M_{c}^{2}\right) \phi(p) \phi(-p)
$$

For pop $\gg \Lambda^{-2}$ and $\Lambda \rightarrow \infty, \Lambda_{\text {eff }}^{2}=(p o p)^{-1}$,

$$
\begin{gathered}
S_{\text {eff }}=\int d^{4} p \frac{1}{2}\left[p^{2}+M^{2}+\frac{g^{2}}{96 \pi^{2} p o p}-\frac{g^{2} M^{2}}{96 \pi^{2}} \ln \frac{1}{m^{2} p o p}\right. \\
\left.+\cdots+O\left(g^{4}\right)\right] \phi(p) \phi(-p)
\end{gathered}
$$

The $U V \Lambda \rightarrow \infty$ limit does not commute with the low momentum IR $p \rightarrow 0$ limit, there is a mixing of these two regions called the UV/IR mixing in the noncommutative field theory.

