Computationally waves from 1st order PT

- An alternative/additional search method for BSM physics.
- As is, SM does not have a 1st order PT; the GCD & EW phase transitions are so-called "crossovers."

 1st order - order parameter discontinuously jumps
 2nd order - "soft" changes in a cts., but non-analytic way

On the other hand, crossover transitions are generally "smooth."
This appears to be the case for the SM.

- BSM physics may include/introduce seeds that introduce a 1st order PT in the larger theory.
- Naturally, BSM also grants possibility of solving/addressing unanswered questions (DM, baryogenesis, org. of EWSB)

- PT itself can induce or create GW, so there may be hope for detecting BSM physics tied to GW production.

- GW from PT between a higher-degree symmetry phase down to the broken EW symmetry. If PT is 1st order, then bubbles of "true vacuum" would be nucleated within the "false vacuum."

- Expansion, collision, & merging of bubbles will create a stochastic GW background.

 (Note: GWs can also originate from primordial universe & cosmic defects (Cosmic strings/domain walls).)

 These are not discussed here.

 a) Bubble nucleation (Dynamics of PT)
 b) " Expansion
 c) " Percolation
a) Nucleation
- Vacuum decay -> barrier penetration from false to true vacuums.
- Resulting tunneling captured in "bounce equation"
- "Bounce eqn" describes the true vacuum bubbles, with a
 prob/time of the form:
 \[\Gamma = A \exp \left(-\frac{\beta}{4\hbar} \right) \left[1 + O(\hbar) \right] \]
 In flat spacetime:
 \[\Gamma(T) \approx T^{\frac{1}{4}} \left(\frac{S_{e}[\phi_{B}(r), T]}{2\pi T} \right)^{\frac{3}{2}} \exp \left(-\frac{S_{e}[\phi_{B}(r), T]}{T} \right) \]
 where \(S_{e}[\phi(r), T] \) is the Euclidean action

\[S_{e}[\phi(r)] = 4\pi \int_{0}^{\infty} dr \, r^{2} [\frac{1}{2} (\frac{d\phi}{dr})^{2} + V_{\text{eff}}(\phi, T)] \]

is estimated at the bounce profile \(\phi_{B}(r) \), which is
a \(\phi^{4} \) field in the eqn. of motion \(\frac{d^{2}\phi}{dr^{2}} + \frac{2}{r} \frac{d\phi}{dr} = \frac{2\beta}{\hbar} \).

- \(V_{\text{eff}}(\phi, T) \) is the effective potential. This usually
 includes tree-level, 1-loop, 2-loop temp. contributions
 (Daisy resummation?). Model dependent.

b) Bubble Expansion
- After nucleation, true vacuum bubbles will expand and
 reach \(c \) or until collision within bubbles.
- BGR full of relativistic particles \(\Rightarrow \) fractional exponents.
 \(\Rightarrow \) The goal is to find out how
 bubble wall velocity: \(v \)
 friction from plasma: \(\eta \)
 Strength of \(PT \): \(\alpha \) (measures released vac. energy)
 Efficiency reaches \(\eta_{p} \) ky, ky \(\left(\frac{\text{vac. energy}}{\text{wall expansion}} \right) \)
c) Bubble Porculation
- True vacuum bubbles collide until PT is complete.
- PT duration can be estimated by mean bubble size at collision, characterized by parameter \(\beta \).
- Both \(\beta \) and \(\propto \) evaluated at the Nucleation Temperature \(T_0 \).

\[T_0 : \text{Temp. at which } \propto \text{ of generated bubbles per unit time per Hubble vol. } = 1. \]

- Porculation has 3 main sources:

 (i) Bubble collisions
 - Collisions are violent
 - QCD PTs might have detectable GW from collisions (Witten), EW too (Hogan)
 - GWs from collisions depend mainly on \(\propto \) & \(\beta \) parameters.

 (ii) Turbulent Magnetohydrodynamics (MHD)
 - From turbulent motion of bulk fluid

 (iii) Sound Waves
 - Over-killing sound waves in bulk fluid.

 \[\Rightarrow \text{All can source GW.} \]

d) Gravitational Waves
- Bubble nucleation requires a potential barrier for tunneling from false vacuum to true vacuum.
- Expansion needs fast-enough moving bubble walls for strong signals.
- Porculation needs efficient collisions so vacuum energy is dispersed into bulk fluid motions.

\[\Rightarrow \text{So the question is:} \]

Which models of physics have 1st order PT so that we have detectable GW?
A quick list:

• **Additional Scalar Scalars**
 - (Gauge singlet ext. (weak Higgs & coupling), change scale (2ndHM))

• **Higher-dim. operators**
 - Simplest to add a cubic term (expected SUSY extensions)
 to create 1st order PT.

• **SUSY extensions**
 - Naturally exhibit PTs is MSSM & NMSSM.

• **Hidden Dark Sectors**
 - GWs originating from Dark sector dynamics.

• **Other RSM extensions**
 - Extra dim., Ricci–Gum PT, non-linear EWPT, QCD PT.

→ we'll focus mostly on Gauge Singlet scalar extension,
and take a short look at a more complex model.
Singlet Scaler extension of SM [1611.01617]

- Simple case, introduce a new real scalar singlet \(\phi \).

\[
V_c(H, \phi) = \mu^2 |H|^2 + \frac{\lambda}{2} |H|^4 + \frac{1}{2} M_q^2 \phi^2 + \frac{1}{2} \lambda_\phi^2 \phi^4 + \frac{\lambda_\phi}{2} |\phi|^4
+ \frac{\lambda_\phi}{2} |H|^2 + \frac{1}{2} \lambda_{\phi H} |\phi|^2 |H|^2
\]

\(m^2 \phi \) removed by shifting \(\phi \) WLOG.

- We will also consider a one-loop effective potential with finite-temperature corrections (i.e., a free energy).

- Imposing standard low-energy phenomenology (Higgs properties, stability) requires:

 1. \(H, \phi \) in a true, stable vacuum at origin at high \(T \).

 2. At the bubble nucleation temp \(T \approx T_N \approx T_c \approx (10^3, 10^5) \text{ GeV} \),

 \(\phi \) acquires a vev in a strong 1st order PT, giving CWeW.

 (\(T_N \) chosen to coincide with a 1600 TeV stringy peak)

 3. At low \(T \), \(H \) acquires vev \(V_H \approx 246 \text{ GeV} \).

- Explicit contributions to \(V_{\text{eff}} \) are:

\[\Delta V_{\phi} = \frac{1}{2 \pi^2} \left[\sum_{\text{all } F} J_{\phi F} \left(\frac{m^2_{F}}{T^2} \right) + \frac{Z_F}{Z_\phi} J_{\phi F} \left(\frac{m^2_{F}}{T^2} \right) \right] \]

\[J_{\phi F} \left(\frac{m^2_{F}}{T^2} \right) = \int_0^x \text{ d}k \ k^4 \ln \left[1 + \exp \left(- \frac{k^2 + m^2_{F}}{T^2} \right) \right] \]

Sums over field-dependent BIF mass eigenvalues.

\(\Delta V_{\text{CW}} = \sum_{i} \frac{\alpha_i m_i^4}{24 \pi^2} \left[\ln \left(\frac{m_i^2}{\mu^2} \right) - \frac{1}{2} \right] \)

\(\mu \) over-mass particles.
\[\phi_i = \# \text{ d.o.f. of } \phi_i \]

\[n_i = \frac{3}{2} \text{ (order parameters)} \]

\[\frac{5}{2} \text{ (in vacua and near vacua)} \]

\textbf{Debye Masses} (not enough explanation in reference)

- Come from bare mass terms in \(Z \) getting corrections
 like \(\Delta M_i^2 \propto T^2 \) (Fermi-Dirac F.T. corrections)

\(\Rightarrow \begin{align*}
 \mathcal{V}_{\text{eff}} = \mathcal{V}_0 + \Delta V_D + \Delta V_T + \Delta V_{\text{ew}}
\end{align*} \)

- To have a strongly 1st order PT with GW, we need

 \begin{enumerate}
 \item At least two minima \(\frac{\mathcal{V}_1}{\mathcal{V}_1'} = \frac{\mathcal{V}_T}{\mathcal{V}_T'} = 0 \)
 (false vacua) (true vacua)
 \item Exist critical temp \(T_c \) where \(\mathcal{V}_1 = \mathcal{V}_1' \)
 \item Order param. \(\gamma = \frac{\langle \phi^2 \rangle}{\langle \phi \rangle^2} \) must be \(\approx O(1) \) at \(T_c \)
 \item Bubble nucleation, growth, collision.
 \end{enumerate}

(\(\Rightarrow \) in this ref, authors choose \(T_c \), \(\mathcal{V}_1 \) & \(\gamma \), and solve for \(\mathcal{Z} \)

parameters at high scales s.t. these conditions hold)

- Peak freq & Amp. of GW are controlled by \(T_c \).
 \(\Rightarrow \) this is also Temp at which a \(\gamma_c \) Volume fraction of the

\textit{Universe is in the true vacua.}

Occurs approximately at

\[p(\ell) \propto \ell^{4+1} \]

\(\propto \) prob per unit time per unit vol. that a

\textbf{critical bubble forms.}

\[p(\ell) \propto T^{-4} \exp \left[-\frac{\langle \phi^2 \rangle (\mathcal{Z})}{T} \right] \]

(\(\propto \phi^2 \))

\(\propto \phi^2 \)

\textbf{So here is the same Euclidean action evaluated at a}

\textit{brane solution, as before:}

\[S_E = \int d^4x \sqrt{g} \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \mathcal{V}_{\text{eff}}(\phi, \dot{\phi}) \right] \]

\[\text{where } \phi \text{ satisfies}
\]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{2}{r^2} \frac{\partial \phi}{\partial x} = 2\nu(\phi, T) \]

\[\phi(0) = 0, \phi(\infty) = 0 \]
- In a radiation-dominated universe, Temp <-> time relation is
\[T^2 = -\frac{45}{16\pi^2} \frac{1}{\rho} \left(\frac{\dot{T}}{T} \right) \]

Combining the last 3 boxed equations, there is a relation
\[SE(TW; \epsilon_s(c,TW)) \approx 170 - 4 \ln \left(\frac{T}{10^3} \right) - 2 \ln(a) \]
which can be solved numerically for \(T \) (by bisection).

- GW amplitude \(A_g \), \(PT \) depends on bulk wall velocity \(v_w \), latent heat released in transition b/w vacuum \(H \), efficiency of conversion of latent heat to GW, and duration of transition.

- Duration parameterized by
\[\beta = -\frac{\dot{S}_T}{\dot{S}_U} \left| \delta V \right| = H \left(\frac{\partial H(c,eT)}{\partial \ln(T)} \right) \frac{SE}{T} \]
\[\left(S_T = \frac{SE}{T}, \quad H = -\frac{\dot{T}}{T} \right) \]

Characteristic timescale is \(\tau \approx \frac{1}{\beta} \).

- Time-scale can be approx. as \(\frac{1}{H} \approx \frac{SE(TW)}{T} \)

- Latent heat param, by
\[\Delta_c = \frac{\Delta p}{f_n}, \quad f_n = \frac{V_0}{\Delta c} \]

where \(f_n \) is energy density of false vacuum, \(\Delta c = \#d\text{-wave cond} \).

\[\Delta p = \left[V_0 \frac{\partial f_n}{\partial T} \right] _E - \left[V_0 \frac{\partial f_n}{\partial T} \right] _T \]

is latent heat in transition from \(E \rightarrow T \)

- \(v_w \) influences amp. \(P \) GW; slowed by friction terms arising from particle interactions. \(P \), less interacting means less friction. For high-scale SSU, very few friction terms, so \(v_w \approx 1 \).

- Conversion efficiency \(\epsilon \approx 1 \), so \(\epsilon = 1 \) is used as \(\gamma = 1.75 \) (is used).

- All factors combined into the envelope approximation to

\[(A_g)^2 \approx 1 \]

- GW peak amplitude:
\[\Omega_{2\text{ew}} \propto 10^{-4} \left(\frac{31.6 \text{ GeV}}{\beta} \right) \left(\frac{1.18}{\alpha + i} \right)^2 e^{\left(\frac{4 \times 10^{-8}}{0.45 \text{ GeV}^2} \right) \left(\frac{10^7}{3} \right)^{\frac{1}{3}}} \]

\[\alpha = 10.77 \text{ GeV} \quad \text{in SSM} \]

- Factors as \(O(1) \) for a PT with \(T = (10^3, 10^8) \text{ GeV} \),

\[\Omega_{2\text{ew}} \propto O(10^{-4}) \quad \text{if } x \approx 1 \text{ and } y \approx 2. \]

\(\text{If } \) aLIGO would be sensitive to \(\Omega_{2\text{ew}} \geq 5 \times 10^{-10} \)

\(\text{at about } O(100) \text{ Hz} \)

- Peak observable amp today at peak freq.

\[f_0 \approx \frac{10.5 \text{ Hz}}{(\frac{4\pi}{T_0}) \left(\frac{T_n}{10^8 \text{ GeV}} \right)^{\frac{1}{16}}} \]

\[f_n = \frac{0.005}{1.5 - 0.4m + m^2} \]

\(\Rightarrow f_0 \) coincides with aLIGO's max sensitivity \(f \approx 20 \text{ Hz} \)

\(\frac{T_n}{10^8 \text{ GeV}} \)

- Additional discussion: Vacuum stability

- at large field values, \(V_{eV}(n) = \frac{1}{2} \lambda (\phi \psi \phi) \psi^4 \)

for SM VEVs.

- Instability of SM Higgs potential.

- Instability can be remedied with SSM via modified \(\beta \)-function for quartic coupling or negative Higgs mass corrections.

- SSM can have additional stability constraints

\[\lambda > 0, \quad \phi > 0 \quad \text{and} \quad K_2 > -2 \sqrt{\lambda} \]

from constraints in \(H = 0, \phi \geq 0, \lambda \psi^4 \) field space.

- Insure that \(H - \phi \) mixing angle is small so model agrees with experimental constraints for SM Higgs.

\[\tan(\theta) \approx \frac{K_1 + K_2 \psi^2}{4 \lambda \psi^2 + K} \left(\frac{V}{V^0} \right) + O\left(\frac{V}{V^3} \right) \]

- There is a remaining residual \(\phi \)-modulated contribution to \(\lambda \), the SM quartic coupling (negative contribution to Higgs mass)

\[m_h^2 = \left(\lambda - \frac{(K_1 + K_2 \psi^2)}{4 \lambda \psi^2 + K} V \right)^2 \leq V^2 \]

\(\Rightarrow \lambda \) must be greater than in SM.
\[\Delta \lambda = \frac{(k_1 + \bar{k}_1 \lambda)}{k_2} \geq 0 \]

- Conditions in (4) are necessary, but not sufficient for stability. For a \mathbb{Z}_2 singlet potential and RN scales $\mu_2 \leq \lambda_2$ and $k_2 > 0$,

\[\lambda_{SM} = \lambda - \Delta \lambda \geq 0 \]

is required to avoid deeper minima in $\phi = 0$ dirac.

Overall, need

\[\mu_2 \leq \lambda_2 \leq \lambda_1 \]

6. Even if it is a scale at which this condition is broken, vacuum can still be stable.

SSM with Baryogenesis [1702.06124]

- Near-identical setup (- $\mu_2 \mid H|^2$ instead ?)

- Depending on the sign of μ_2 (or λ_2), EW PT can occur in two ways:

1. $\mu_2 > 0$: happens at large λ_2, small λ_2.

 Potential grows as going away from $\phi = 0$, one-step PT from origin to EW min.

2. $\mu_2 < 0$: Small λ_2, large λ_2, origin \rightarrow ϕ_{min}, origin \rightarrow EW min.

- Dynamics & PT are basically the same as before.

- For BG, necessary condition is decoupling of sphaleron processes after EWPT (not main focus)

 \rightarrow provide B violation necessary for asymmetry.
- DM signals
 - ϕ can be treated as DM candidate, as it is stable.
 - Follow standard analysis using Boltzmann eqn.

$$\frac{\partial Y}{\partial x} = \frac{2\pi N_c}{4\pi} \left(\frac{m_\phi^2}{x^2} \right) \left(\frac{\text{thermal}}{5} \right) <\text{X}\hat{\text{X}}> \left(Y_{\text{th}} - Y_{\text{e}} \right)$$

$Y = \frac{W}{S}$, $x = \frac{m_\phi}{T}$, $<\text{X}\hat{\text{X}}>$. Thermo. avg. mass. Cross section, heat = energy. Dep.

- Solve 1 to find $n_{\phi, L}$ obtained.

$$\begin{align*}
\sum q_{\phi L}^2 &= \frac{N_c}{3} \frac{M_\phi^2}{M_\phi^2} \sim m_\phi^2 \times 2.76 \times 10^{-9} \\
\sum p_{\phi L}^2 &= 0.14 \quad (\text{Planck 2018})
\end{align*}$$

- Improving direct detection limits, ϕ cannot be a single-component DM; in fact, ϕ cannot be all of DM. It is the only hidden sector particle.

- More in-depth discussion on cosmological modification consideration in the reference paper.

- Asymmetric DM from GW (2209.04788)
 - A more complex BSM physics model featuring potentially detectable GW from 1st order PT (also Prim. vacuum walls).
 - Gauge group

$$SU(3)_c \times SU(2)_L \times U(1)_y \times SU(2)_e$$

- Quarks are $SU(2)_c$ singlets
- Leptons are upper components of $SU(2)_e$ doublets

$$\begin{align*}
(l_1, \bar{l}_1)^T &= (1, 1, \frac{1}{2}, 1) \\
(l_2, \bar{l}_2)^T &= (1, 1, -\frac{1}{2}, 1) \\
(l_3, \bar{l}_3)^T &= (1, 1, -1, 1)
\end{align*}$$

$$\begin{align*}
(\nu_1, \bar{\nu}_1)^T &= (1, 1, 0, 1) \\
(\nu_2, \bar{\nu}_2)^T &= (1, 1, 0, 1)
\end{align*}$$

- Break $SU(2)_c$ spontaneously by introducing two complex doublets.
scalar doublets, Φ_1 and Φ_2 (this also provides a mechanism for $B-L$)

- Scalar potential

$$V(\Phi_1, \Phi_2) = m_{\psi_1}^2 |\Phi_1|^2 + m_{\psi_2}^2 |\Phi_2|^2 - (m_{\psi_{12}} \Phi_1^\dagger \Phi_2 + \text{h.c.})$$

$$\quad + \lambda_1 |\Phi_1|^4 + \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_{12} \Phi_1^\dagger \Phi_2^\dagger$$

$$\quad + \left[\left(\tilde{\lambda}_1 |\Phi_1|^2 + \tilde{\lambda}_2 |\Phi_2|^2 + \tilde{\lambda}_{12} \Phi_1^\dagger \Phi_2^\dagger \right) \Phi_1^\dagger \Phi_2 + \text{h.c.} \right]$$

$$m_{\psi_1}^2, \lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$$

- $\langle \Phi_1 \rangle = v_1$, $\langle \Phi_2 \rangle = v_2$, breaks $SU(2)_L$ symmetry, leaving \mathbb{R}^4 in the SM Gauge group.

$$\Phi_1 = \begin{pmatrix} c_\theta + ic_{\psi_1} \\ i\hat{c}_\theta + p_{\psi_1} + i\alpha_{\psi_1} \end{pmatrix}$$

- After $SU(2)_L$ breaking, there are 6 electrically charged and 6 neutral new fermionic stables. A remnant $U(1)_e$ symmetry prevents decay to SM particles.

1. highest of these could be DM candidate!

- 3 new gauge bosons Z', ω', ω'', masses

$$m_{Z',\omega',\omega''} = \frac{g_1}{2} v_1$$

- Scalars $\Phi_{1,2}$ (CP even), A (CP odd), $\chi_{1,2}$ (complex)

$$
\text{Veff}(\Phi_1, \Phi_2, T) = V_{\text{tree}}(\Phi_1, \Phi_2) + V_{\text{loop}}(\Phi_1, \Phi_2) + V_T(\Phi_1, \Phi_2, T),
$$

very similar to SUSM cases.

\Rightarrow As before, potential shape evolves/develops new minima as T

drops to Te & TN (Φ_1, Φ_2 stable)

- In this case, multiple (4) minima develop, related

by approximate Z_2 symmetry of the potential, two pairs related by a gauge symmetry,

i.e., only two physically distinct true vacua:

$$(\Phi_1, \Phi_2)_{\text{true}} \quad (\Phi_1, -\Phi_2)_{\text{true}}$$

\Rightarrow energy density of each may differ slightly;
if splitting is small, domain walls may form.

- 1st order PT GW analysis just as before, one
Classically Conformal U(1) extension (tie-in to current work)

- Impose classical conformal symmetry to forbid explicit
 - mass^2 terms
- Extend SM gauge group to SU(3) x SU(2)_L x U(1)_Y x U(1)_H,
 introducing new Higgs-like scalar \(H \) in new hidden sector.
 - U(1)_H symmetry broken by CW mechanism at \(V \), from
 1-loop corrections via \(V_{\text{loop}}(\phi) \).
 \[
 \Rightarrow V = \frac{1}{2} \chi H H' + \frac{1}{4} \phi \phi H H' + \alpha \chi H H' H H' + V_{\text{loop}}(\phi)
 \]
 - \(\mu^2 \) term induced by Higgs-\(H \) mixing term.
 \Rightarrow EWSB induced by CW mechanism symmetry breaking.
 \(\Rightarrow \) perhaps \(H \) a 1st order PT between
 \(V \phi \) minimum and EW minimum

- How does the conformal symmetry affect the dynamics of the PT?
- Will other sources of GW be more dominant than bubble collisions?
- What happens if we take \(Z' \) (or another particle) as DM candidate?
- What if we use SU(2)_H as the extension?