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1. Consider a pendulum consisting of a thin solid uniform rod of mass m and length L,
shown in the figure.

(a) (16 points) Find the Lagrangian and equation of motion for the pendulum.
Assume the motion is in a plane.

(b) (4 points) Find the frequency of small oscillations.
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2. n masses, each with a value of m = 10 grams, are in contact with each other and form
a straight line segment along the x−axis. Another mass M( ̸= m) moving with speed
v along the x−axis strikes one of the masses at the end of the line segment. Assume
the collision is elastic and that all motion after the collision remains along the x−axis.

(a) (5 points) Is it possible for only one mass to be moving after the collision?
Explain.

(b) (10 points) If two, and only two, masses are moving after the collision what are
their speeds? [Hint: there are two different cases.]

(c) (5 points) If in part (b) the two masses moving after the collision have equal
speeds, what are the possible values for M?

…..
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1. The orbiting space station, undergoing a circular orbit of radius R, begins venting a

steady stream of gas at the rear of the ship in the direction tangent to its orbit. Do a
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speed v, of the space station changes due to the venting gas [i.e., determine
d
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as a function of the force F on the space station due to the venting gass, and the mass M
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3. Consider a circular orbit of a massive object moving within a spherically symmetric
gravitational potential produced by a mass distribution with a density described by a
function ρ(r). The “rotation curve”, i.e. the speed of circular orbits as a function of
radius r, is given by a power law of index α, where −1

2
< α ≤ 1:

vc(r) = v0

(
r

r0

)α

.

(a) (15 points) What is the form of the density distribution ρ(r), in terms of r, r0,
v0, and α?

(b) (5 points) No real physical system can fully be described by this rotation curve
at all radii. Using the mass contained within a radius r, argue why any real
system must deviate from this parametrization at sufficiently large radius.
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4. A ball is thrown with initial speed v0 from an inclined plane. The plane is inclined at
an angle ϕ above the horizontal, and the ball’s initial velocity is at an angle θ above
the plane (θ + ϕ < 90◦). Choose axes with x measured up the slope and y normal to
the slope.

(a) (10 points) Write down Newton’s second law using these axes and find the ball’s
position as a function of time.

(b) (5 points) Show that the ball lands a distance R =
2v20 sin θ cos(θ+ϕ)

g cos2 ϕ
from its launch-

ing point.
(c) (5 points) Show that for a given v0 and ϕ, the maximum possible range up the

incline plane is Rmax =
v20

g(1+sinϕ)
.

4. A ball is thrown with initial speed v0 up an inclined plane. The plane is inclined at an
angle φ above the horizontal, and the ball’s initial velocity is at an angle θ above the
plane. Choose axes with x measured up the slope, y normal to the slope, and z across
it.

(a) (10 points) Write down Newton’s second law using these axes and find the ball’s
position as a function of time.

(b) (5 points) Show that the ball lands a distance R = 2v20 sin θ cos(θ+φ)/(g cos2 φ)
from its launching point.

(c) (5 points) Show that for a given v0 and φ, the maximum possible range up the
incline plane is Rmax = v20/[g(1 + sinφ)].
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5. Consider the motion of two particles A and B with masses mA and mB, respectively,
in the xy-plane. The potential of this system is given by V (r) = 1

2
κr2, where κ is a

positive constant, and r is the distance between the particles.

(a) (4 points) Write the Lagrangian of the system in terms of the position vectors
for A and B: x⃗A = (xA, yA) and x⃗B = (xB, yB), where xA, yA, xB and yB are
Cartesian coordinates.

(b) (4 points) From the Lagrangian, write the Euler-Lagrange equations for the two
particles.

(c) (4 points) Calculate the total momentum of the system, and show that it is
conserved.

(d) (4 points) Calculate the total angular momentum of the system, and show that
it is conserved.

(e) (4 points) In the center of mass frame, mAx⃗A + mBx⃗B = 0, express the La-
grangian of the system in terms of r⃗ = x⃗A − x⃗B.
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6. In the pulley system shown in the figure, two masses, m and M > 2m, are connected
with a massless string. The left pulley is massless, while the right one has mass mP

with radius R and its moment of inertia is given by I = 1
2
mPR

2. Assume that the
string does not stretch and the pulleys are frictionless.
(20 points) Express the acceleration of the mass M in terms of m, M , mP and g (the
free-fall acceleration).

M m

(d) The total angular momentum of the system is given by

Lz = mA

(
xA

dyA
dt

− yA
dxA

dt

)
+mB

(
xB

dyB
dt

− yB
dxB

dt

)
,

and hence,

dLz

dt
= mA

(
xA

d2yA
dt2

− yA
d2xA

dt2

)
+mB

(
xB

d2yB
dt2

− yB
d2xB

dt2

)
.

Using the Euler-Lagrange equations found in (b), we can easily show dLz
dt = 0.

(e)

L =
1

2
µ

(
d!r

dt

)2

− 1

2
κ (!r)2 ,

where µ = mAmB
mA+mB

.
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1. Given the vector potential

(Ar, Aθ, Aϕ) =

(
0, 0, g

1− cos θ

r sin θ

)
,

written in spherical coordinates (r, θ, ϕ),

(a) (5 points) find the resulting magnetic field B⃗, and the total magnetic flux
∮
B⃗ ·dS⃗

through a sphere of radius r centered at the origin.
(b) (5 points) Does the ‘identity’ ∇ · ∇ × A⃗ = 0 hold everywhere, and if not, why

not?
(c) (5 points) Write down the force on an electric charge in this field and show

that the angular momentum L⃗ of the electric charge is not conserved, but its
magnitude is.

(d) (5 points) Show L⃗ + C r̂ is conserved, where r̂ is the unit vector in the radial
direction, and C is a constant. What is the value of C?

The curl in spherical coordinates is

∇× A⃗ =

(
1

r sin θ
(∂θ(sin θAϕ)− ∂ϕAθ) ,

1

r sin θ
∂ϕAr −

1

r
∂r(rAϕ),

1

r
(∂r(rAθ)− ∂θAr)

)
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2. Consider two parallel circular wire rings of radius R on a common axis, separated by
a distance 2D. The rings carry the same current I, in the same direction. Defining z
as the vertical displacement from the center point, as shown:

R

R

D

D

z

I

I

(a) (10 points) Write down a second order Taylor expansion in the z coordinate
around z = 0 of the magnetic field B⃗ along the z axis.

(b) (10 points) For what value of D is the field uniform to second order?
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3. An idea for interstellar propulsion is a solar sail: a low-mass large-area reflective surface
that is propelled by radiation pressure from the Sun. Consider a sail with area A and
mass m, that is at an angle α relative to the direction to the Sun. The sail has a
reflectivity η, and all photons that are not reflected by the sail are absorbed (make
sure you think about both the reflected and absorbed photons).

α

Sun

Sunlight

β

Sail

acceleration

(a) (16 points) If the sail is a distance d from the Sun, which has a total luminos-
ity, i.e. the total amount of energy it emits per unit time, of LSun, what is the
acceleration of the sail due to the momentum imparted by the light? Give both
the magnitude of the acceleration, and the angle β that the acceleration vector
makes relative to the normal of the sail.

(b) (4 points) What does β become in the limit of (i) perfect reflectivity, and (ii)
perfect absorption? Give both an explicit expression and an easy-to-understand
description of the direction.
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4. A long, nonconducting, solid cylinder of radius R has a nonuniform volume charge
density ρ that is a function of radial distance r from the cylinder axis: ρ = b r2, where
b is a constant. Find the electric field for:

(a) (10 points) r < R.
(b) (10 points) r > R.
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5. A hollow cylindrical conductor of outer radius a and inner radius b carries a current
i in a direction parallel to the central axis, which is uniformly distributed over its
cross-section.

(a) (5 points) Find the magnetic field magnitude B for the radial distance r in the
range b < r < a.

(b) (5 points) Show that when r = a, this equation gives the magnetic field magni-
tude B at the surface of a long straight wire carrying current i.

(c) (5 points) Show that when r = b, it gives zero magnetic field.
(d) (5 points) Show that when b = 0, it gives the magnetic field inside a solid

conductor of radius a carrying current i.
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6. A point charge q and a grounded conducting sphere with radius R are placed as shown
in the figure below. In the Cartesian coordinates, the center of the sphere is at the
origin and the position of the point charge is (0, 0, 2R).

(a) (10 points) Find the potential at (x, y, z) outside of the sphere.
(b) (10 points) Let us introduce another point charge q′ to the system and place it

at (0, 0,−4R). Find q′ if the force acting on this point charge is zero.

6. A point charge q and a grounded conducting sphere with radius R are placed as shown
in the figure. In the Cartesian coordinates, the center of the sphere is at the origin
and the position of the point charge is (0, 0, 2R).

(a) (X points) Find the potential at (x, y, z) outside of the sphere.
(b) (X points) Let us introduce another point charge q′ to the system and place it

at (0, 0,−4R). What is q′ if the force acting on this point charge is zero.

SOLUTIONS:

(a) The potential of the system is obtained by considering an image charge Q = −q/2
at (0, 0,−R/2). So, the potential at (x, y, z) is given by

φ(x, y, z) =
q

4πε0

1√
x2 + y2 + (z − 2R)2

− q/2

4πε0

1√
x2 + y2 + (z −R/2)2

.

(b) The image charge corresponding to the new point charge is Q = −q′/4 at (0, 0,−R/4).
The force action on the point charge q′ is given by

F =
q

4πε0

1

(−4R− 2R)2
− q/2

4πε0

1

(−4R−R/2)2
− q′/4

4πε0

1

(−4R +R/4)2
.

The condition of F = 0 leads to q′ = 25
144q.
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and the position of the point charge is (0, 0, 2R).

(a) (X points) Find the potential at (x, y, z) outside of the sphere.
(b) (X points) Let us introduce another point charge q′ to the system and place it

at (0, 0,−4R). What is q′ if the force acting on this point charge is zero.
(0, 0, 0)

SOLUTIONS:

(a) The potential of the system is obtained by considering an image charge Q = −q/2
at (0, 0,−R/2). So, the potential at (x, y, z) is given by
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(b) The image charge corresponding to the new point charge is Q = −q′/4 at (0, 0,−R/4).
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.
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144q.

11

6. A point charge q and a grounded conducting sphere with radius R are placed as shown
in the figure. In the Cartesian coordinates, the center of the sphere is at the origin
and the position of the point charge is (0, 0, 2R).

(a) (X points) Find the potential at (x, y, z) outside of the sphere.
(b) (X points) Let us introduce another point charge q′ to the system and place it

at (0, 0,−4R). What is q′ if the force acting on this point charge is zero.
Z

SOLUTIONS:

(a) The potential of the system is obtained by considering an image charge Q = −q/2
at (0, 0,−R/2). So, the potential at (x, y, z) is given by

φ(x, y, z) =
q

4πε0

1√
x2 + y2 + (z − 2R)2

− q/2

4πε0

1√
x2 + y2 + (z −R/2)2

.

(b) The image charge corresponding to the new point charge is Q = −q′/4 at (0, 0,−R/4).
The force action on the point charge q′ is given by

F =
q

4πε0

1

(−4R− 2R)2
− q/2

4πε0

1

(−4R−R/2)2
− q′/4

4πε0

1

(−4R +R/4)2
.

The condition of F = 0 leads to q′ = 25
144q.

11

7


