The large-order hydrodynamic series:
guasinormal modes and singulants
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Motivations

# Hydrodynamics describes conserved currents near equilibrium !
# Here: relativistic / conformal hydrodynamics !

| Universal applicability e.g.!
# astrophysics!
# nuclear physics!
## condensed matter!
# QFTs with holographic duals!
# black hole physics in AdS!

# Understand the formal properties of hydrodynamic expansions



Relativistic hydrodynamics

# Conservation equations! | H "TH #=0

# Hydrodynamic variables! T UM

L . TURTI Ve !
# Constitutive relations! | T _|.Ti Heal + |
| !
| H L [T, U]
n=1

# Perturbative expansion in derivatives of hydro variables!
# Symmetries dictate allowed tensor structures ! | tln)
# Transport coe$ cients dictated by microscopic details !

# Captures non-equilibrium processes in QFTs, black holes, etc.



Relativistic hydrodynamics e.0.S.

/

Thea = (! + P)URU' + Pg*

Ideal

= gD }$1D#D#"”! | $,D'*D' DsU" + ...,
\ 2 (some terms suppressed)

shear tensor, one derivative of U

# Transport coe$ cients | : "! ,#1, #2, . . . Pxed by microscopic detalls !
1

# e.g. QFT with an Einstein dual | = T

S [Kovtun, Son, Starinets (2004)]



Relativistic hydrodynamics

L= TR T U]

n=1
# What is the nature of this series?!
# Usually see: Ohydro breaks down when gradients become large®
# Goal is to make such statements more precise !
# If convergent , what sets the radius?!

# If divergent , what is the optimal order of truncation? !

# As a classical theory!

Will argue that:

# Itis a divergent series under generic conditions !

# Large-order behaviour governed by Gingulants O, which resemble QNMs



Precursor: Bjorken 3ow in holography
[Heller, Janik, Witaszczyk (2013)]

t

# Of interest in heavy-ion col-lisions! \/
# Dependsonlyon | = t21 x?2
/\ X

# Large ! expansion ~ hydro gradient expansion!

— _1 - "3 "4
= | 47 3 1o + !2/3+ !4/3+-"

# ! nare transport coe $ cients, generated to order 240

# Found to be a divergent series 1 ! NI

# Resummation via Borel-PadZ bnds non-perturbative contributions !

"L # exp "i3$1(0)H* 3

# expected since QNMs are non-perturbative in - 1/ | However, Bjorken is
just one Row

e 'TC)" T()! | ' U3 (& highly symmetric)



An update on what we have understood since Bjorken [3ow
In chronological order:

Part 1. Quasinormal modes
1803.08058 - BW !

Part 2. On-shell constitutive relations
2012.15393 - M. Heller, A. Serantes, M. Spali"” ski, V. Svensson, BW!

2110.07621 - M. Heller, A. Serantes, M. Spali" ski, V. Svensson, BW



Part 1. Quasinormal modes



# Quasinormal modes are linear Ructuations around equilibrium

| In hydrodynamics
# aka hydrodynamic modes, Buctuate the hydrodynamic variables

T(t,x)= To+ ! Tk It
U(t,x) = "¢+ U !

# Solutions: sound and shear

# e.g. shear! I (k) = ! IDk %+ O(k)4
! !
# part of a the hydro series | (k) = | k2n
n=1
| Microscopic theories  (with a hydrodynamic limit)!
# Include sound, shear!

# But have additional non-hydrodynamic modes !
# e.g. black brane in AdS



QNMs in holographic QFTs

# Holographic CFTq !  Einstein gravity in AdSg-1:
# Thermal state ! black hole in AdS!
# QNMs are given by perturbations of a black hole spacetime

conformal

boundary | gpl | n (r)elk é(l i" t

e.g. [Kovtun, Starinets (2005)]

# oDE BVP problem! ! j (K)
# Inbnitely many of them!
# Classify at small K:!
# hydrodynamic sound and shear! / |
# nonhydrodynamic /transient <— _ | j (k | ()) = "

J

!i(k! O):O




ONMs of RN-AdS 4

hydrodynanpjc
. 1'1.0
1 (K) = k2"
15
n=1
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non-hydro/transients

| 1351
(k)= 1 — + O(K)?
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\
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Re(k)/u

Computed ! n to hydrodynamic order ~80 [1803.08058 - BW]!



Radius of convergence 10

[1803.08058 - BW]! | . Filof cin
| -
(k)= !,k .
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# radius of convergenceis (| : T
# obstruction are branch point singularities at 'K = = |C]|

# Can be revealed by:!
# Using PadZ approximant of series data!
# Exact numerical calculations!

# View branches of ! (k) as describing a multi-sheeted Riemann surface



Complex k plane

sheet 1

radius of convergence !

set by square-root branch point

sheet 2 sheet 3

i

/|

sheet 4

‘ :

NV

/

Hydrodynamics:!
neighbourhood of !

origin on sheet 1
I

1 (K) = | k2"

n=1

:

(conjugate pair of) !
transient QNMs
(K)= !+ O(K)?

J

analytic continuation : transport coe $ cients !

and moreE !

iInPnitely many sheets, !
all connected

black hole QNM spectrum



Summary of part 1

# branches of ! (K) for kK ! C describe a Riemann surface!
# radius = |K| of closest singularity to origin on hydrodynamic sheet !

# Set by mode collisions (i.e. branch point) for RN AdSs [1803.08058 - BW]

# Subsequently observed for several other examples, e.g.!

# Analytically known dispersion relations in MIS/BRSSS!

# RN AdS all Q [Abbasi, Tahery (2020)] [Jansen, Pantelidou (2020)]

# Near extremal examples [Arean, Davison, Gouteraux, Suzuki (2020)]
# QNMs with various operator dimensions [Abbasi, Kaminski (2020)]

# n.b. Ocritical points of spectral curves®Grozdanov, Kovtun, Starinets, Tadi%(2019)K
do not determine the radius of convergence !

# (counterexamples are provided in: [2012.15393]&
singularities of ! (K)are not always critical points, &
critical points are not always singularities of ! (Kk))



Part 2. On-shell constitutive relations



TH " = |deal s
!!

W= [T, U
n=1

## Wish to evaluate this on-shell!

# Linear response: intimate connection to QMN in complete generality

Given initial data compactly supported in momentum space !kmax

" kmax <k convergent
Kmax > K1 divergent (geometric growth)
Kmax | divergent (factorial growth)

where k! is radius of convergence of | (k)

[2007.05524 - M. Heller, A. Serantes, M. Spali" ski, V. Svensson, BW]



What about nonlinearities? [Heller, Serantes, Spali" ski, Svensson, BW (2021)]

# Easily demonstrated in BRSSS model

L "TH #=0

ITH = TR 4o R
T Tideal * !

(L+ D) ! ¥ = g

# n.b. it is not a hydrodynamic theory in the sense we have debned it &
(not formulated as gradient expansion, includes additional degrees of freedom) !

# motivated as a toy model with a good IVP (stability, causality, well-posed)

# 1t admits a hydrodynamic expansion
!
' |

= 1 ET, U
n=1

# Simply invert operator! (1 + T;ID)
) = (D)™ (1 go™)

(n

| W



Nonlinear case [Heller, Serantes, Spali’ ski, Svensson, BW (2021)]

## Given a microscopic solution T Upl can easily evaluate
)

ey = (0 mD)™ ' (!t not)

90
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0 . T T T T

: : 0 20 40 60 80 1(I)O 1I20
X n
# Factorial growth, divergent series, zero radius of convergence !

# Generalises Bjorken Row-type results to 1+1 w/ no symmetry !
# Conbrmed across a variety of MIS-like models



+ 1

i I
# Lattice: !' (m! saturates to largest eval of D, set by inverse lattice spacing

Largest M eigenvalue / Geometric growth
L 2 .
'V, lattice)

\}Qv « 1600 x 3200
o 300 x 300
10" 10! 107 1078 10

n
H# Generalises the linear result



Analytic control through Singulants
[Heller, Serantes, Spall" ski, Svensson, BW (to appear, 2021)]

# We have seen how expressions of the form

e = (! mD)™ ' (! not)

(n

lead to n! growth

# In fact, admit a large n analytic solution ~ n!

; "(n+ ! (t, X))
| I( )(t,X) | A(t,X),, (t,X)n+! (t,x)'’

Provided the singulant beld ' obeys a linear PDE

1
"1 (T)

# They can also be obtained with a WKB-type analysis

[Dingle (1973)]

UMI 1 =

# We computed ! eoms in MIS/BRSSS, HISW, DN, Holography, Kinetic Theory!



Analytic control through Singulants
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Analytic control through Singulants 4
error

Some commentson X

[
# Control the order of optimal truncation ! opt
"(n+ ! (t,x))
C(n) , ( ,
+ (t,X) ' A(t,X)" (t X)n+!(t,x)’
s =0 = = |
O 1L | =0 == nopt = |XI  qarge|! |)
n=n opt
_ A L 1
# Motion of X controls Ohydrodynamisation® u#1 1 = )
# Can map singulant eom to a dispersion relation for a linear
response problem
“ 11 - | 11 .
urt ! |1, e! Ll!i + 1K
uHt I = T H=H = # k=0
M u! (T) ||! (T) NH ( )

not QNMSs!



Summary



Summary

# Hydrodynamic phenomena are ubiquitous !
# Fundamental links to black hole physics !
# So far poorly understood as a gradient expansion !

!
| = T,U
n=1
| ONMs
# Finite radius set by singularity (collision with non-hydro gnm) !

| On-shell constitutive relations
# Generically divergent (numerics for 1+1 Rows in MIS-like models)!
# Can be rendered geometric/convergent with momentum space cuto



Summary

Singulants, =

# Govern the large order hydrodynamic gradient expansion !

# Obey simple linear equations, not unlike QNM equations!!
# MIS/BRSSS, HISW, DN, Holography, Kinetic Theory!

# Coe$ cient of n! growth! | ‘! ‘! 1

# Recede from origin over time ~ hydrodynamisation &
(order of optimal truncation ! ‘! ‘)!

# They are not QNMs in general



Some future directions

| Divergence in holography
# We constructed singulant equations in holography, !
# But this is only a necessary condition for n! growth !
# Bjorken Row is one known example

| Other EFTs
# Hydrodynamics can be viewed as a simple classical EFT, &
can we apply these techniques in other cases?

| IVP well-posedness
# Orthogonal to our concerns so far !
# Seems generally incompatible with gradient expansion !
# Currently pursued solutions are to solve an unrelated problem &
e.g. IVP in OtoyO models: MIS, BRSSS, BDNK, E

Thank you for your attention!



