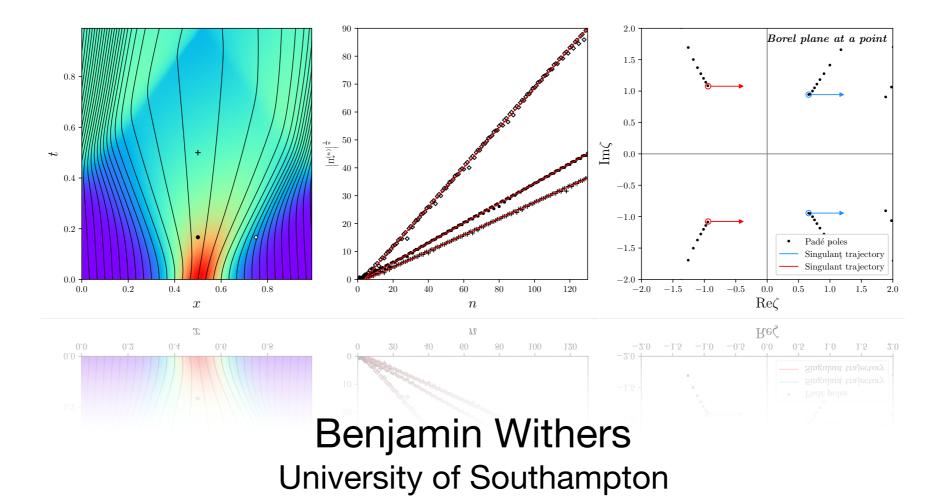
The large-order hydrodynamic series: quasinormal modes and singulants



University of Alabama, 12 November 2021

THE ROYAL SOCIETY

Based on: **1803.08058** - BW **2007.05524, 2012.15393, 2110.07621** -M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW

Motivations

- Hydrodynamics describes conserved currents near equilibrium
- Here: relativistic / conformal hydrodynamics

• Universal applicability e.g.

- astrophysics
- nuclear physics
- condensed matter
- QFTs with holographic duals
 - black hole physics in AdS
- Understand the formal properties of hydrodynamic expansions

Relativistic hydrodynamics

• Conservation equations
$$\ \,
abla _{\mu } \left< T^{\mu
u } \right> = 0$$

• Hydrodynamic variables
$$~~T, U^{\mu}$$

• Constitutive relations
$$\langle T^{\mu\nu} \rangle = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu}$$

$$\Pi^{\mu\nu} = \sum_{n=1}^{\infty} \Pi^{\mu\nu}_{(n)} [T, U]$$

- Perturbative expansion in derivatives of hydro variables
- Symmetries dictate allowed tensor structures $\Pi^{\mu
 u}_{(n)}$
- Transport coefficients dictated by microscopic details
- Captures non-equilibrium processes in QFTs, black holes, etc.

Relativistic hydrodynamics

$$T_{ideal}^{\mu\nu} = (\epsilon + P) U^{\mu}U^{\nu} + Pg^{\mu\nu}$$

$$\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} + \tau_{\pi}\eta \mathcal{D}\sigma^{\mu\nu} - \frac{1}{2}\theta_{1} \mathcal{D}_{\alpha}\mathcal{D}^{\alpha}\sigma^{\mu\nu} - \theta_{2} \mathcal{D}^{\langle\mu}\mathcal{D}^{\nu\rangle}\mathcal{D}_{\alpha}U^{\alpha} + \dots,$$
(some terms suppressed)
shear tensor, one derivative of U

- Transport coefficients $\eta, \tau_{\pi}, \theta_1, \theta_2, \dots$ fixed by microscopic details e.g. QFT with an Einstein dual $\eta = \frac{1}{4\pi}s$ [Kovtun, Son, Starinets (2004)]

Relativistic hydrodynamics

$$\Pi^{\mu\nu} = \sum_{n=1}^{\infty} \Pi^{\mu\nu}_{(n)} [T, U]$$

- What is the nature of this series?
- Usually see: "hydro breaks down when gradients become large"
- Goal is to make such statements more precise
 - If convergent, what sets the radius?
 - If divergent, what is the optimal order of truncation?
- As a classical theory

Will argue that:

- It is a divergent series under generic conditions
- Large-order behaviour governed by 'singulants', which resemble QNMs

Precursor: Bjorken flow in holography

[Heller, Janik, Witaszczyk (2013)]

- Of interest in heavy-ion collisions
- Depends only on $\tau = \sqrt{t^2 x^2}$
- Large au expansion ~ hydro gradient expansion

$$\epsilon = \frac{1}{\tau^{4/3}} \left(\epsilon_2 + \frac{\epsilon_3}{\tau^{2/3}} + \frac{\epsilon_4}{\tau^{4/3}} + \ldots \right)$$

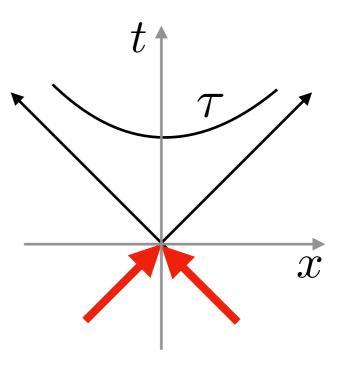
- ϵ_n are transport coefficients, generated to order 240
- Found to be a divergent series $\epsilon_n \sim n!$
- Resummation via Borel-Padé finds non-perturbative contributions

$$\delta\epsilon \sim \tau^{\alpha} \exp\left(-i\frac{3}{2}\omega_1(0)\tau^{2/3}\right)$$

- expected since QNMs are non-perturbative in $\,1/ au$

$$e^{-\gamma T(\tau)\tau}$$
 $T(\tau) \sim \tau^{-1/3}$

However, Bjorken is just one flow (& highly symmetric)



An update on what we have understood since Bjorken flow In chronological order:

Part 1. Quasinormal modes 1803.08058 - BW

Part 2. On-shell constitutive relations

2012.15393 - M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW 2110.07621 - M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW

Part 1. Quasinormal modes

- Quasinormal modes are linear fluctuations around equilibrium
- In hydrodynamics
 - aka hydrodynamic modes, fluctuate the hydrodynamic variables

$$T(t,x) = T_0 + \delta T e^{ik \cdot x - i\omega t}$$
$$U(t,x) = \partial_t + \delta U e^{ik \cdot x - i\omega t}$$

• Solutions: sound and shear

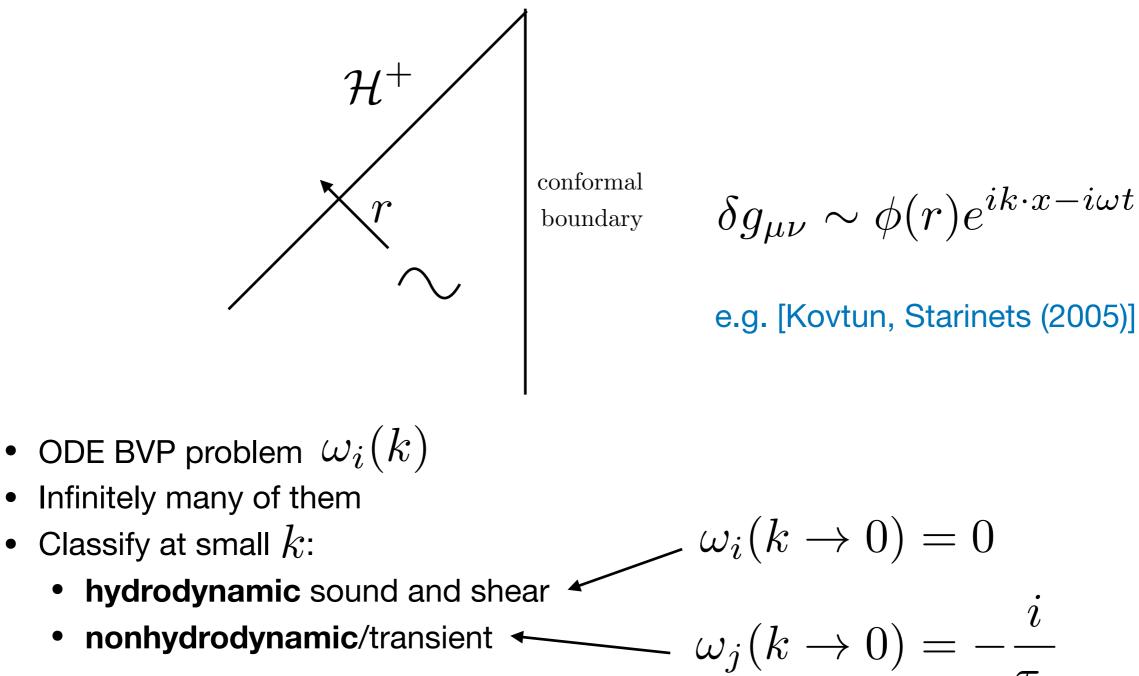
• e.g. shear
$$\omega(k) = -iDk^2 + O(k)^4$$

- part of a the hydro series
$$\ \ \omega(k) = \sum_{n=1}^\infty \omega_n k^{2n}$$

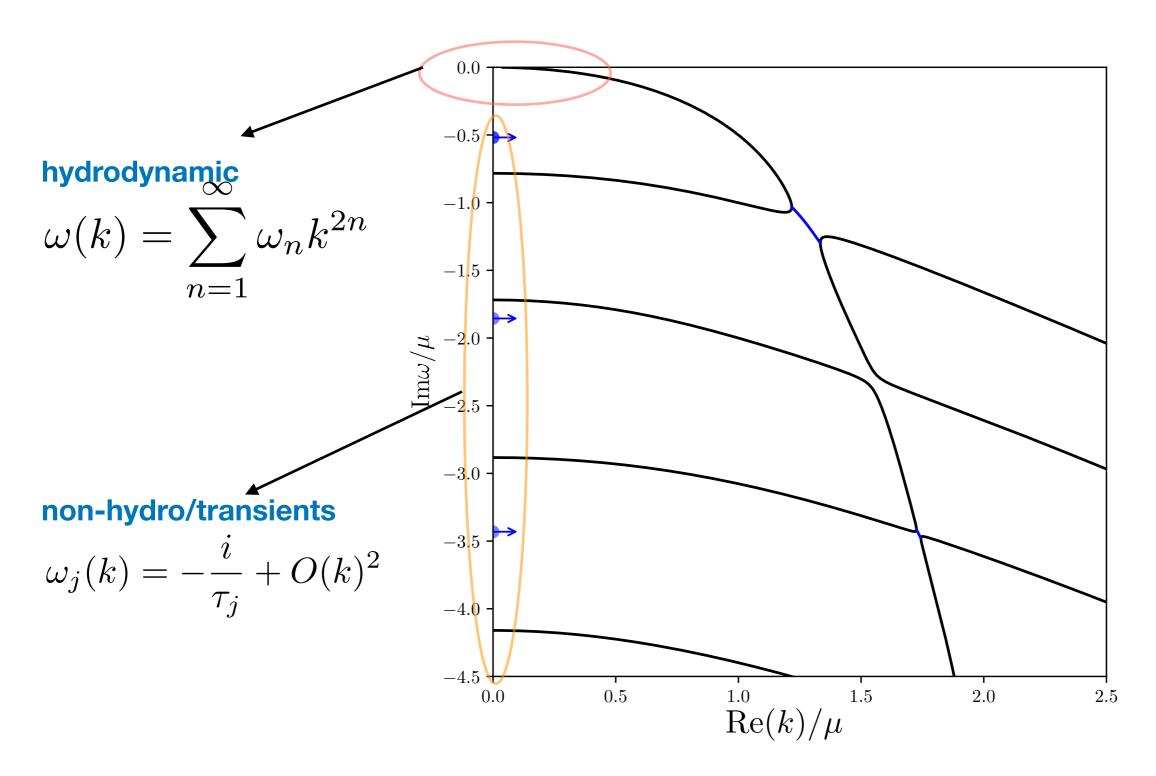
- **Microscopic theories** (with a hydrodynamic limit)
 - Include sound, shear
 - But have additional non-hydrodynamic modes
 - e.g. black brane in AdS

QNMs in holographic QFTs

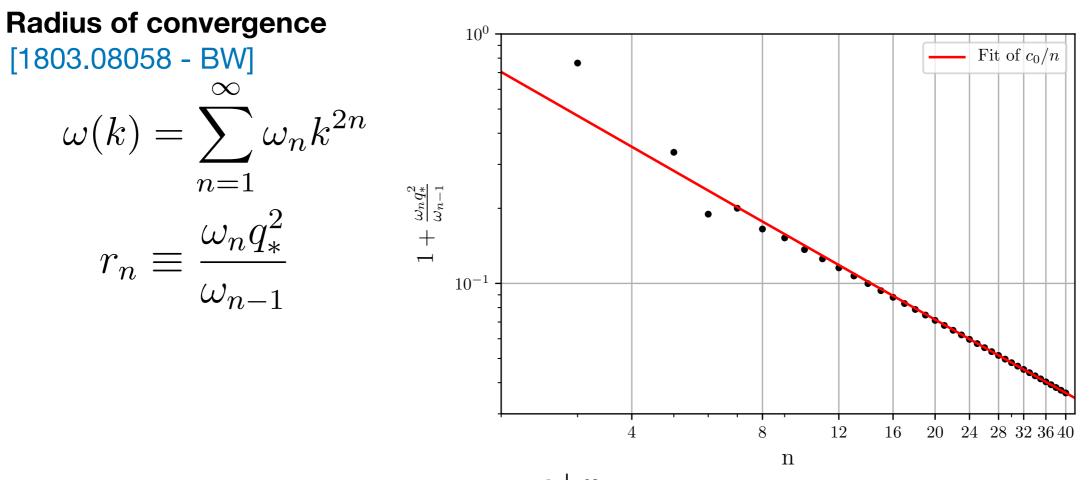
- Holographic CFT_d \leftrightarrow Einstein gravity in AdS_{d+1}
- Thermal state \leftrightarrow black hole in AdS
- QNMs are given by perturbations of a black hole spacetime



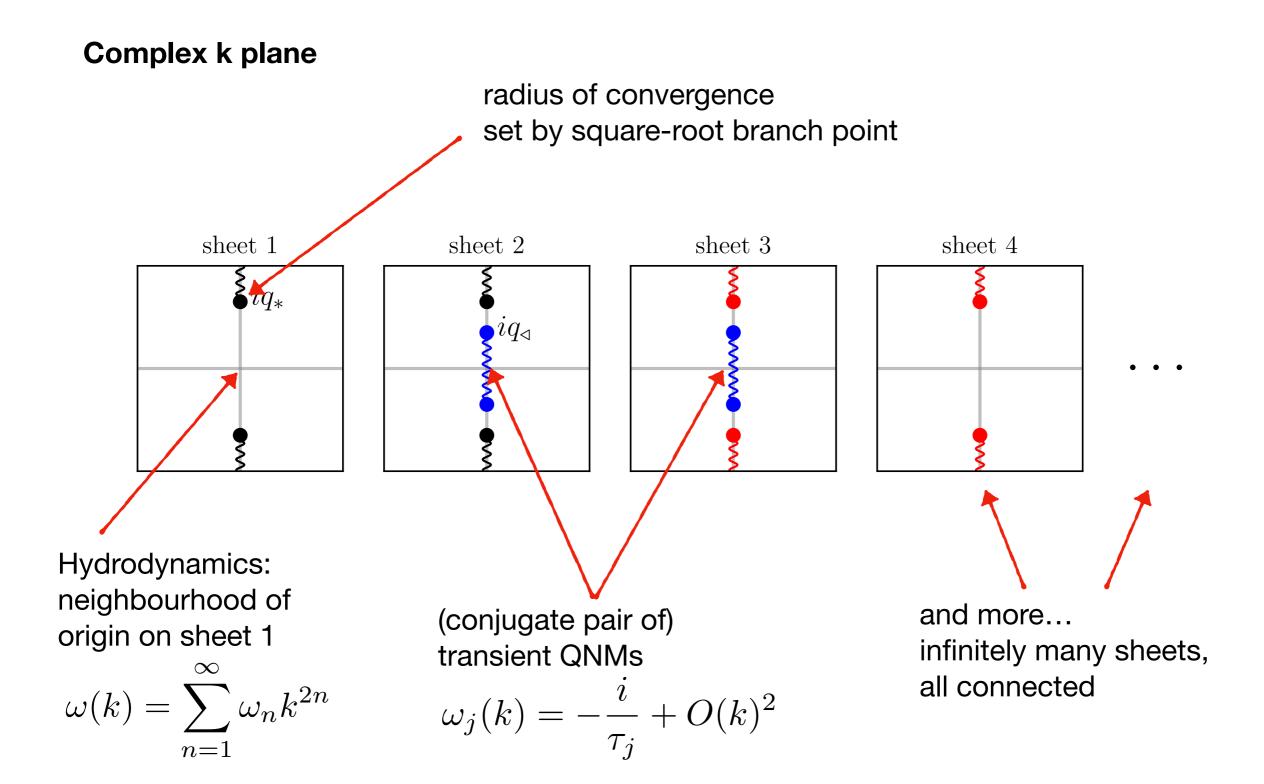
QNMs of RN-AdS₄



Computed ω_n to hydrodynamic order ~80 [1803.08058 - BW]



- radius of convergence is $\ q_*\equiv rac{\epsilon+p}{2\mu\sqrt{\eta}}$
- obstruction are branch point singularities at $k=\pm i q_*$
- Can be revealed by:
 - Using Padé approximant of series data
 - Exact numerical calculations
- View branches of $\omega(k)$ as describing a multi-sheeted Riemann surface



analytic continuation: transport coefficients → black hole QNM spectrum

Summary of part 1

- branches of $\,\omega(k)$ for $\,k\in\mathbb{C}$ describe a Riemann surface
- radius = |k| of closest singularity to origin on hydrodynamic sheet
- Set by mode collisions (*i.e. branch point*) for RN AdS₄ [1803.08058 BW]
- Subsequently observed for several other examples, e.g.
 - Analytically known dispersion relations in MIS/BRSSS
 - RN AdS all Q [Abbasi, Tahery (2020)] [Jansen, Pantelidou (2020)]
 - Near extremal examples [Arean, Davison, Gouteraux, Suzuki (2020)]
 - QNMs with various operator dimensions [Abbasi, Kaminski (2020)]
- **n.b.** 'critical points of spectral curves' [Grozdanov, Kovtun, Starinets, Tadić (2019)] do not determine the radius of convergence
- (counterexamples are provided in: [2012.15393] singularities of $\omega(k)$ are not always critical points, critical points are not always singularities of $\,\omega(k)$)

Part 2. On-shell constitutive relations

$$\langle T^{\mu\nu} \rangle = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu}$$
$$\Pi^{\mu\nu} = \sum_{n=1}^{\infty} \Pi^{\mu\nu}_{(n)} [T, U]$$

- Wish to evaluate this on-shell
- Linear response: intimate connection to QMN in complete generality

Given initial data compactly supported in momentum space
$$k_{\max}$$

$$\begin{cases} k_{\max} < k_{*} & \text{convergent} \\ k_{\max} > k_{*} & \text{divergent (geometric growth)} \\ k_{\max} \to \infty & \text{divergent (factorial growth)} \end{cases}$$
where k_{*} is radius of convergence of $\omega(k)$

[2007.05524 - M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW]

What about nonlinearities? [Heller, Serantes, Spaliński, Svensson, BW (2021)]

• Easily demonstrated in **BRSSS model**

$$\begin{aligned} \nabla_{\mu} \left\langle T^{\mu\nu} \right\rangle &= 0\\ \left\langle T^{\mu\nu} \right\rangle &= T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu}\\ \left(1 + \tau_{\Pi} \mathcal{D}\right) \Pi^{\mu\nu} &= -\eta \sigma^{\mu\nu} \end{aligned}$$

- n.b. it is not a hydrodynamic theory in the sense we have defined it (not formulated as gradient expansion, includes additional degrees of freedom)
- motivated as a toy model with a good IVP (stability, causality, well-posed)
- It admits a hydrodynamic expansion

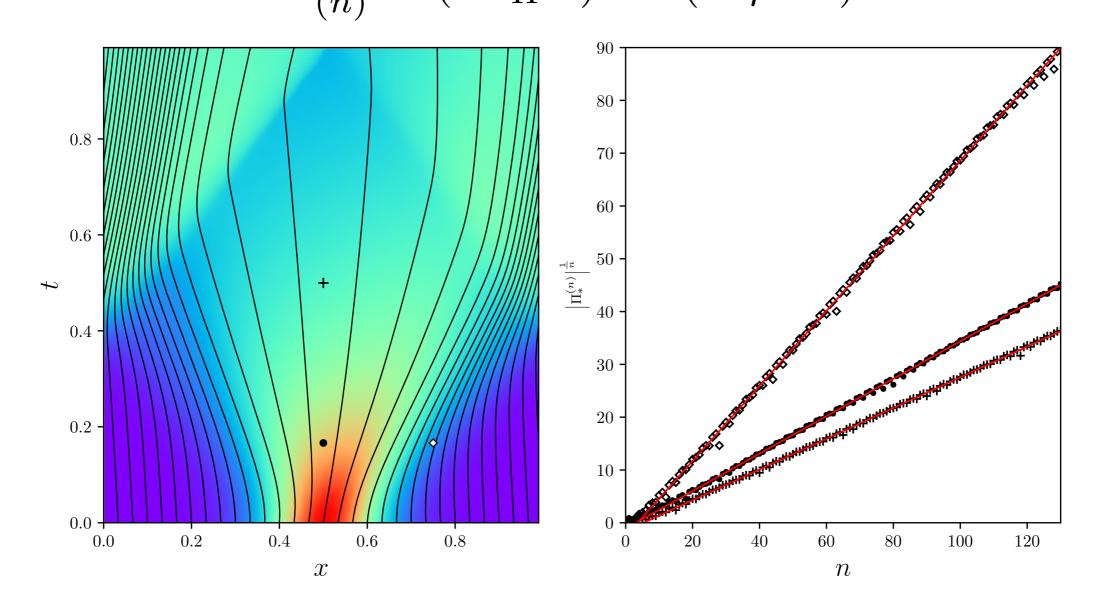
$$\Pi^{\mu\nu} = \sum_{n=1}^{\infty} \Pi^{\mu\nu}_{(n)} [T, U]$$

• Simply invert operator! $(1+ au_\Pi \mathcal{D})$

$$\Pi_{(n)}^{\mu\nu} = \left(-\tau_{\Pi}\mathcal{D}\right)^{n-1} \left(-\eta\sigma^{\mu\nu}\right)$$

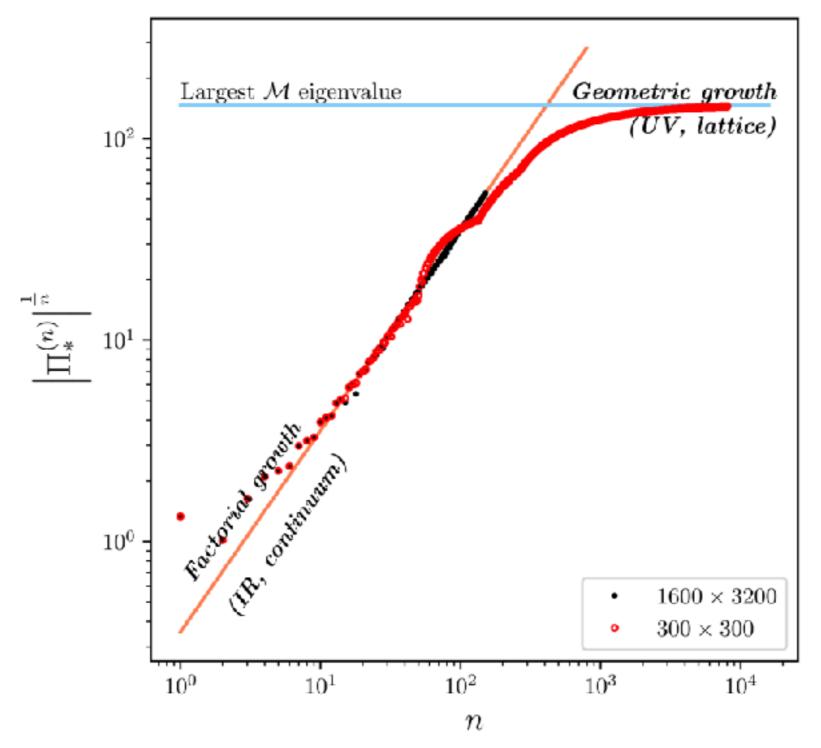
Nonlinear case [Heller, Serantes, Spaliński, Svensson, BW (2021)]

• Given a microscopic solution T, U^{μ} can easily evaluate $\Pi^{\mu\nu}_{(n)} = \left(-\tau_{\Pi}\mathcal{D}\right)^{n-1} \left(-\eta\sigma^{\mu\nu}\right)$



- Factorial growth, divergent series, zero radius of convergence
- Generalises Bjorken flow-type results to 1+1 w/ no symmetry
- Confirmed across a variety of MIS-like models

• Lattice: $\left|\Pi^{\mu\nu}_{(n)}\right|^{\frac{1}{n}}$ saturates to largest eval of \mathcal{D} , set by inverse lattice spacing



• Generalises the linear result

Analytic control through Singulants

[Heller, Serantes, Spaliński, Svensson, BW (to appear, 2021)]

• We have seen how expressions of the form

$$\Pi_{(n)}^{\mu\nu} = \left(-\tau_{\Pi}\mathcal{D}\right)^{n-1} \left(-\eta\sigma^{\mu\nu}\right)$$

lead to n! growth

• In fact, admit a large n analytic solution ~ n! $\Pi_*^{(n)}(t,x) \sim A(t,x) \frac{\Gamma(n+\beta(t,x))}{\gamma(t,x)^{n+\beta(t,x)}},$

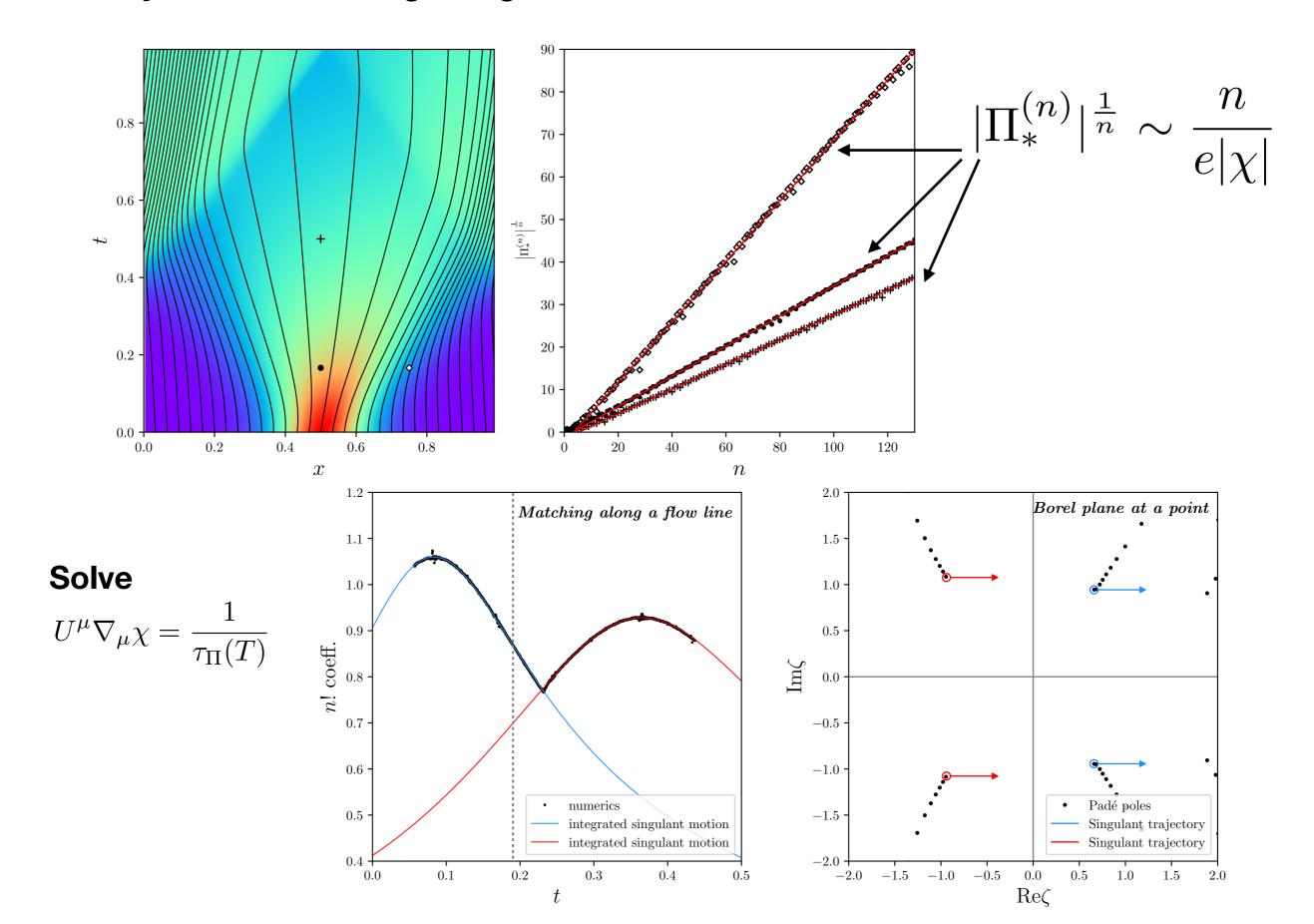
[Dingle (1973)]

Provided the singulant field χ obeys a linear PDE

$$U^{\mu}\nabla_{\mu}\chi = \frac{1}{\tau_{\Pi}(T)}$$

- They can also be obtained with a WKB-type analysis
- We computed χ eoms in MIS/BRSSS, HJSW, DN, Holography, Kinetic Theory

Analytic control through Singulants



Analytic control through Singulants

Some comments on χ

• Control the order of optimal truncation

$$\Pi_*^{(n)}(t,x) \sim A(t,x) \frac{\Gamma(n+\beta(t,x))}{\chi(t,x)^{n+\beta(t,x)}},$$

$$\partial_n \left| \Pi_*^{(n)} \right|_{n=n_{opt}} = 0 \implies n_{opt} = |\chi| \quad \text{(large } |\chi|\text{)}$$

- Motion of χ controls 'hydrodynamisation' $U^{\mu}\nabla_{\mu}\chi = \frac{1}{\tau_{\Pi}(T)}$
- Can map singulant eom to a dispersion relation for a linear response problem

$$U^{\mu}\nabla_{\mu}\chi \to i\omega, \qquad e^{\mu}\nabla_{\mu}\chi \to \pm ik$$
$$U^{\mu}\nabla_{\mu}\chi = \frac{1}{\tau_{\Pi}(T)} \to \omega = -\frac{i}{\tau_{\Pi}(T)} = \omega_{NH}(k=0)$$

error nopt

not QNMs!

Summary

Summary

- Hydrodynamic phenomena are ubiquitous
- Fundamental links to black hole physics
- So far poorly understood as a gradient expansion

$$\Pi^{\mu\nu} = \sum_{n=1}^{\infty} \Pi^{\mu\nu}_{(n)} [T, U]$$

- QNMs
 - Finite radius set by singularity (collision with non-hydro qnm)
- On-shell constitutive relations
 - Generically divergent (numerics for 1+1 flows in MIS-like models)
 - Can be rendered geometric/convergent with momentum space cutoff

Summary

- Govern the large order hydrodynamic gradient expansion
- Obey simple linear equations, not unlike QNM equations
 - MIS/BRSSS, HJSW, DN, Holography, Kinetic Theory
- Coefficient of n! growth $\sim |\chi|^{-1}$
- Recede from origin over time ~ hydrodynamisation (order of optimal truncation $\sim |\chi|$)
- They are not QNMs in general

Some future directions

• Divergence in holography

- We constructed singulant equations in holography,
- But this is only a necessary condition for n! growth
- Bjorken flow is one known example

• Other EFTs

• Hydrodynamics can be viewed as a simple classical EFT, can we apply these techniques in other cases?

• IVP well-posedness

- Orthogonal to our concerns so far
- Seems generally incompatible with gradient expansion
- Currently pursued solutions are to solve an unrelated problem e.g. IVP in 'toy' models: MIS, BRSSS, BDNK, ...

Thank you for your attention!