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Motivations

# Hydrodynamics describes conserved currents near equilibrium !
# Here: relativistic / conformal hydrodynamics !

! Universal applicability e.g. !
# astrophysics!
# nuclear physics!
# condensed matter !
# QFTs with holographic duals !

# black hole physics in AdS !

# Understand the formal properties of hydrodynamic expansions



# Conservation equations!

# Hydrodynamic variables!

# Constitutive relations !

# Perturbative expansion in derivatives of hydro variables !

# Symmetries dictate allowed tensor structures !

# Transport coe$ cients dictated by microscopic details !

# Captures non-equilibrium processes in QFTs, black holes, etc.

Relativistic hydrodynamics

! µ !
(n )

! µ "Tµ ! #= 0

!Tµ ! " = Tµ!
ideal + ! µ !

T, Uµ

! µ ! =
!!

n =1

! µ !
(n ) [T, U]



! µ ! = ! ! " µ ! + #" ! D" µ ! !
1
2

$1 D# D# " µ ! ! $2 D! µ D! " D# U# + . . . ,
(some terms suppressed)

# Transport coe$ cients                                        Þxed by microscopic details !

# e.g. QFT with an Einstein dual                           [Kovtun, Son, Starinets (2004)]

! , " ! , #1, #2, . . .

! =
1

4"
s

e.o.s.

shear tensor, one derivative of U

Tµ !
ideal = ( ! + P) Uµ U! + Pgµ!

Relativistic hydrodynamics



# What is the nature of this series?!

# Usually see: Òhydro breaks down when gradients become largeÓ!

# Goal is to make such statements more precise !
# If convergent , what sets the radius?!
# If divergent , what is the optimal order of truncation? !

# As a classical theory!

# It is a divergent series under generic conditions !

# Large-order behaviour governed by Ôsingulants Õ, which resemble QNMs

Relativistic hydrodynamics

Will argue that:

! µ ! =
!!

n =1

! µ !
(n ) [T, U]



# Of interest in heavy-ion collisions !

# Depends only on

!

x

t

! =
!

t2 ! x2

# Found to be a divergent series 

# Resummation via Borel-PadŽ Þnds non-perturbative contributions !

# expected since QNMs are non-perturbative in

!" ! #! exp
!
" i 3

2 $1(0)#2/ 3
"

1/ !

! n ! n!

e! ! T (" ) " T(! ) ! ! ! 1/ 3

# Large      expansion ~ hydro gradient expansion !

#      are transport coe$ cients, generated to order 240

! = 1
! 4/ 3

!
! 2 + " 3

! 2 / 3 + " 4
! 4 / 3 + . . .

"
!

! n

[Heller, Janik, Witaszczyk (2013)]
Precursor: Bjorken ßow in holography

However, Bjorken is 
just one ßow 

(& highly symmetric)



Part 1. Quasinormal modes 

Part 2. On-shell constitutive relations 

1803.08058 - BW !

2012.15393 - M. Heller, A. Serantes, M. Spali" ski, V. Svensson, BW!

2110.07621 - M. Heller, A. Serantes, M. Spali" ski, V. Svensson, BW 

An update on what we have understood since Bjorken ßow 
In chronological order:



Part 1. Quasinormal modes



# e.g. shear!

# part of a the hydro series

! Microscopic theories (with a hydrodynamic limit) !
# Include sound, shear!
# But have additional non-hydrodynamic modes !
# e.g. black brane in AdS

! (k) = ! iDk 2 + O(k)4

! (k) =
!!

n =1

! n k2n

! In hydrodynamics 
# aka hydrodynamic modes, ßuctuate the hydrodynamic variables

# Solutions: sound and shear

# Quasinormal modes are linear ßuctuations around equilibrium

T(t, x ) = T0 + ! T eik áx ! i ! t

U(t, x ) = " t + ! Ueik áx ! i ! t



H +

! gµ ! ! " (r )eik áx ! i " t

# Holographic CFTd        Einstein gravity in AdSd+1!

# Thermal state        black hole in AdS!

# QNMs are given by perturbations of a black hole spacetime

conformal

boundary

!
!

QNMs in holographic QFTs

r

e.g. [Kovtun, Starinets (2005)]

# ODE BVP problem!

# InÞnitely many of them!

# Classify at small    :!

# hydrodynamic  sound and shear!

# nonhydrodynamic /transient

! i (k)

k ! i (k ! 0) = 0

! j (k ! 0) = "
i
" j
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/µ

q =Req, Re! = 0
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QNMs of RN-AdS 4

hydrodynamic

! (k) =
!!

n =1

! n k2n

non-hydro/transients

! j (k) = !
i
" j

+ O(k)2

Re(k)/µ

Computed          to hydrodynamic order ~80! n [1803.08058 - BW]!



4 8 12 16 20 24 28 32 3640

n

10! 1

100

1
+

!
n
q2 "

!
n

!
1

Fit of c0/n

where we have Þxed an arbitrary coe! cient to unity. We subsequently expand this expres-
sion in q to generate horizon boundary conditions for each of the! n . At level 0 we can
easily solve the equation, to obtain! 0(z) = z. Next order will determine ! 1(z) and " 1,
and so on. We turn to numerics to evaluate the remaining! n and associated frequency
coe! cients" n for n ! 1. To obtain " n one must solven ODEs. We do this using a shooting
method, integrating out from the horizon with a guess for" n and iteratively improving
this guess until we satisfy the boundary conditions atz = 0. The values we obtain are
summarised in table1.

3 Radius of convergence

Using the speciÞc microscopic model detailed in the last section, we have determined the
Taylor expansion of" (q) (up to some Þnite orderN = 40, i.e. hydrodynamic order 79),

" (q) =
N!

n=1

" nq2n . (3.1)

Rendering the " n dimensionless using the scaleq! , we present the coe! cients obtained
in table 1. Next we can determine the radius of convergence by looking at the ratios of
successive terms. SpeciÞcally we form the new dimensionless sequence,

rn "
" nq2

!

" n" 1
. (3.2)

The large-n behaviour of this sequence is 1 +rn = c0/n as illustrated in Þgure1, so rn

converges to# 1 conÞrming that as expected, the radius of convergence of the hydrodynamic
expansion is governed byq2 = # q2

! , i.e. the branch points atq = ± iq! .
As a further diagnostic, we compute the diagonal Pad«e approximant of the series. i.e.

deÞning a ratio of two polynomials,

Pq(q) =
" N

i =0 ai qi

1 +
" N

j =1 bj qj
(3.3)

calculate the coe! cients ai , bi from the coe! cients " n by matching order-by-order in the
Taylor series aroundq = 0. We plot the poles and the zeros ofPq(q) in Þgure 2 for the
upper-half plane, showing an alternating sequence of poles and zeros along a radial ray.
The closest pole toq = 0 is given by q $ 0.753i , a good indicator of the branch point at
iq! $ 0.750i (the same structure exists in the lower-half plane).

5

q! ! ! + p
2µ

"
"

Radius of convergence

# radius of convergence is      !

# obstruction are branch point singularities at !

# Can be revealed by:!
# Using PadŽ approximant of series data!
# Exact numerical calculations !

# View  branches of              as describing a multi-sheeted Riemann surface

! (k) =
!!

n =1

! n k2n

k = ± iq!

! (k)

[1803.08058 - BW]!



iq!

sheet 1

iq!

sheet 2 sheet 3 sheet 4

. . .

Hydrodynamics: !
neighbourhood of !
origin on sheet 1

! (k) =
!!

n =1

! n k2n

(conjugate pair of) !
transient QNMs

! j (k) = !
i
" j

+ O(k)2

and moreÉ !
inÞnitely many sheets, !
all connected

analytic continuation : transport coe $ cients !  black hole QNM spectrum

Complex k plane
radius of convergence !
set by square-root branch point



# branches of             for                describe a Riemann surface !

# radius              of closest singularity to origin on hydrodynamic sheet !

# Set by mode collisions ( i.e. branch point ) for RN AdS4 [1803.08058 - BW]

# Subsequently observed for several other examples, e.g. !

# Analytically known dispersion relations in MIS/BRSSS !

# RN AdS all Q [Abbasi, Tahery (2020)] [Jansen, Pantelidou (2020)]!

# Near extremal examples [Arean, Davison, Gouteraux, Suzuki (2020)]!

# QNMs with various operator dimensions [Abbasi, Kaminski (2020)]

Summary of part 1

! (k) k ! C

= |k|

# n.b. Ôcritical points of spectral curvesÕ [Grozdanov, Kovtun, Starinets, Tadi% (2019)]&
do not determine the radius of convergence !

# (counterexamples are provided in: [2012.15393]&
singularities of          are not always critical points, &
critical points are not always singularities of            )! (k)

! (k)



Part 2. On-shell constitutive relations



!Tµ ! " = Tµ!
ideal + ! µ !

# Wish to evaluate this on-shell !

# Linear response:  intimate connection to QMN in complete generality

where       is radius of convergence of

kmaxGiven initial data  compactly supported in momentum space !

!
"

#

kmax < k ! convergent
kmax > k ! divergent (geometric growth)
kmax ! " divergent (factorial growth)

k! ! (k)

[2007.05524 - M. Heller, A. Serantes, M. Spali" ski, V. Svensson, BW]

! µ ! =
!!

n =1

! µ !
(n ) [T, U]



What about nonlinearities? [Heller, Serantes, Spali" ski, Svensson, BW (2021)]

(1 + ! ⇧D) ! µ⌫ = �"# µ⌫

⇧µ⌫
(n) = (! ⌧⇧D)n! 1 (! ⌘�µ⌫)

# Easily demonstrated in BRSSS model

! µ "Tµ ! #= 0
!Tµ ! " = Tµ!

ideal + ! µ !

# It admits a hydrodynamic expansion

(1 + ⌧⇧D)# Simply invert operator!

# n.b. it is not a hydrodynamic theory in the sense we have deÞned it &
 (not formulated as gradient expansion, includes additional degrees of freedom) !

# motivated as a toy model with a good IVP (stability, causality, well-posed)

! µ ! =
!!

n =1

! µ !
(n ) [T, U]



Nonlinear case [Heller, Serantes, Spali" ski, Svensson, BW (2021)]

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

t

0 20 40 60 80 100 120

n

0

10

20

30

40

50

60

70

80

90

! ! !!
(n

)
!

! ! !1 n

# Factorial growth, divergent series, zero radius of convergence !
# Generalises Bjorken ßow-type results to 1+1 w/ no symmetry !
# ConÞrmed across a variety of MIS-like models

# Given a microscopic solution                  can easily evaluateT, Uµ

⇧µ⌫
(n) = (! ⌧⇧D)n! 1 (! ⌘�µ⌫)



# Lattice:           saturates to largest eval of       , set by inverse lattice spacing     D
!
!
!! µ !

(n )

!
!
!

1
n

# Generalises the linear result



[Heller, Serantes, Spali" ski, Svensson, BW (to appear, 2021)]
Analytic control through Singulants

⇧µ⌫
(n) = (! ⌧⇧D)n! 1 (! ⌘�µ⌫)

# We have seen how expressions of the form

# In fact, admit a large n analytic solution ~ n!

# They can also be obtained with a WKB-type analysis

! (n )
! (t, x ) ! A(t, x )

" (n + ! (t, x ))
" (t, x )n + ! ( t,x )

,

Provided the singulant  Þeld      obeys a linear PDE !

lead to n! growth

# We computed     eoms in MIS/BRSSS, HJSW, DN, Holography, Kinetic Theory !

Uµ ! µ ! =
1

"! (T)

[Dingle (1973)]

!
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Analytic control through Singulants

|! (n )
! |

1
n !

n
e|! |
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Uµ ! µ ! =
1

"! (T)

Solve



Analytic control through Singulants

# Control the order of optimal truncation !

# Motion of        controls ÔhydrodynamisationÕ!

# Can map singulant eom to a dispersion relation for a linear 
response problem

! (n )
! (t, x ) ! A(t, x )

" (n + ! (t, x ))
" (t, x )n + ! ( t,x )

,

@n

!
!
!⇧(n )

⇤

!
!
!
n = nopt

= 0 =) nopt = |�|

Some comments on �

�

Uµ ! µ ! =
1

"! (T)
" # = #

i
"! (T)

= #NH (k = 0)

Uµ ! µ ! " i " , eµ ! µ ! " ± ik

not QNMs!

error

nnopt

Uµ ! µ ! =
1

"! (T)

(large       )|! |



Summary



# Hydrodynamic phenomena are ubiquitous !
# Fundamental links to black hole physics !
# So far poorly understood as a gradient expansion !

! QNMs 
# Finite radius set by singularity (collision with non-hydro qnm) !

! On-shell constitutive relations 
# Generically divergent (numerics for 1+1 ßows in MIS-like models)!
# Can be rendered geometric/convergent with momentum space cuto '

Summary

! µ ! =
!!

n =1

! µ !
(n ) [T, U]



# Govern the large order hydrodynamic gradient expansion !

# Obey simple linear equations, not unlike QNM equations !
# MIS/BRSSS, HJSW, DN, Holography, Kinetic Theory!

# Coe$ cient of n! growth !

# Recede from origin over time ~ hydrodynamisation &
(order of optimal truncation               ) !

# They are not QNMs in general

! |! |! 1

!Singulants,

! |! |

Summary



! IVP well-posedness 
# Orthogonal to our concerns so far !
# Seems generally incompatible with gradient expansion !
# Currently pursued solutions are to solve an unrelated problem &

e.g. IVP in ÔtoyÕ models: MIS, BRSSS, BDNK, É

! Other EFTs 
# Hydrodynamics can be viewed as a simple classical EFT, &

can we apply these techniques in other cases?

Some future directions

! Divergence in holography 
# We constructed singulant equations in holography, !
# But this is only a necessary condition for n! growth !
# Bjorken ßow is one known example

Thank you for your attention!


