Hydrodynamic Attractors in Holographic Bjorken Flow and Resurgence

Marco Knipfer
UA, HEP Seminar
10/22/21
Overview: Heavy Ion Collisions
Overview: Attractor

https://en.wikipedia.org/wiki/Limit_cycle
Overview: Attractor

\[y'(x) = \cos(\pi x y(x)) \]
Overview: Attractor

[first: Heller, Spalinski 1503.07514]
Overview: Attractor
Overview: Unreasonable Effectiveness of Hydro at Early Times
Overview: Resurgence

- Divergent series
- Borel Transform
- Borel Resummation
- Poles in Borel plane
- Instantons
- Hydro expansion is divergent

\[\epsilon = \frac{3}{8} N_c^2 \pi^2 \frac{1}{\tau^{4/3}} \left(\epsilon_2 + \epsilon_3 \frac{1}{\tau^{2/3}} + \epsilon_4 \frac{1}{\tau^{4/3}} + \ldots \right) \]

[Heller, Spalinski 1302.0697]
Holographic Setup

5-dimensional anti-de Sitter space-time

4-dimensional space-time (hologram)

Black Hole

Superstrings

http://www.quantum-bits.org/?p=1134
Five-dimensional metric Ansatz

Einstein Gravity

$$ds^2 = 2dr dv - A(v, r)dv^2 + e^{B(v,r)} S(v, r)^2 (dx_1^2 + dx_2^2) + S(v, r)^2 e^{-2B(v,r)} d\xi^2,$$

$$\lim_{r \to \infty} \frac{1}{r^2} ds^2 = -d\tau^2 + dx_1^2 + dx_2^2 + \tau^2 d\xi^2,$$
Bjorken Flow

\[\tau = \sqrt{t^2 - z^2} \]

\[u^\mu = (u^t, u^x, u^y, u^z) = (t, 0, 0, z)/\sqrt{t^2 - z^2} \]

\[\tau \partial_\tau \ln \epsilon = -\frac{4}{3} + \frac{16 C_\eta}{9 \tau T} + \frac{32 C_\eta C_\pi (1 - C'_\lambda)}{27 \tau^2 T^2} \]

\[\frac{\Delta p}{\epsilon} \equiv \frac{P_T - P_L}{\epsilon} = 2 + \frac{3}{2} \frac{\partial_\tau \epsilon}{\epsilon} \]
Gravitational Setup

\[ds^2 = 2dr dv - A(v, r) dv^2 + e^{B(v, r)} S(v, r)^2 (dx_1^2 + dx_2^2) + S(v, r)^2 e^{-2B(v, r)} d\xi^2, \]

Einstein Field Equations singular at horizon

\[A(v, r) \longrightarrow \text{divergent} + A_s(v, r) \]

Same for S, B
Time Evolution Setup

\[u = \frac{1}{r} \]

\[ds^2 = 2drdv - A(v, r)dv^2 + e^{B(v, r)}S(v, r)^2(dx_1^2 + dx_2^2) + S(v, r)^2e^{-2B(v, r)}d\xi^2, \]

- Rewrite EFEs as: \[\frac{d\Phi}{dt} = \mathcal{F}[\Phi], \quad \Phi = (t, a_4, B_s(u)) \]

- Start with initial conditions: \[\Phi(t_0) = \{t_0, a_4(t_0), B_s(t_0, r)\} \]

- Time evolve \[\Phi(t_0 + dt) = \Phi(t_0) + \Phi'(t_0)dt \]
Nested DEQs Structure

- Rewrite EFEs as:

\[
\frac{d\Phi}{dt} = \mathcal{F}[\Phi] \quad \Phi = (t, a_4, B(u))
\]

<table>
<thead>
<tr>
<th>DEQ 1</th>
<th>0th derivatives</th>
<th>1st derivatives</th>
<th>2nd derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bs[t, u], Ss[t, u]}</td>
<td>{Bs[^0,1][t, u], Ss[^0,1][t, u]}</td>
<td>{Ss[^0,2][t, u]}</td>
<td>()</td>
</tr>
<tr>
<td>DEQ 2</td>
<td>{Bs[t, u], Ss[t, u], dplusSs[t, u]}</td>
<td>{Ss[^0,1][t, u], dplusSs[^0,1][t, u]}</td>
<td>()</td>
</tr>
<tr>
<td>DEQ 3</td>
<td>{Bs[t, u], Ss[t, u], dplusBs[t, u], dplusSs[t, u]}</td>
<td>{Bs[^0,1][t, u], Ss[^0,1][t, u], dplusBs[^0,1][t, u]}</td>
<td>()</td>
</tr>
<tr>
<td>DEQ 4</td>
<td>{As[t, u], Bs[t, u], Ss[t, u], dplusBs[t, u], dplusSs[t, u]}</td>
<td>{As[^0,1][t, u], Bs[^0,1][t, u], Ss[^0,1][t, u]}</td>
<td>{As[^0,2][t, u]}</td>
</tr>
<tr>
<td>DEQ 5</td>
<td>{As[t, u], Ss[t, u], dplusBs[t, u], dplusSs[t, u]}</td>
<td>{As[^0,1][t, u]}</td>
<td>()</td>
</tr>
</tbody>
</table>

[Chesler, Yaffe 0812.2053]

https://github.com/BoGGoG/DEQSystemStructureVisualization
Gravitational Setup

<table>
<thead>
<tr>
<th>0th derivatives</th>
<th>1st derivatives</th>
<th>2nd derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEQ 1 {Bs[t, u], Ss[t, u]}</td>
<td>{Bs^{(0,1)}[t, u], Ss^{(0,1)}[t, u]}</td>
<td>{Ss^{(0,2)}[t, u]}</td>
</tr>
<tr>
<td>DEQ 2 {Bs[t, u], Ss[t, u], dplusSs[t, u]}</td>
<td>{Ss^{(0,1)}[t, u], dplusSs^{(0,1)}[t, u]}</td>
<td>({}</td>
</tr>
<tr>
<td>DEQ 3 {Bs[t, u], Ss[t, u], dplusBs[t, u], dplusSs[t, u]}</td>
<td>{Bs^{(0,1)}[t, u], Ss^{(0,1)}[t, u], dplusBs^{(0,1)}[t, u]}</td>
<td>({}</td>
</tr>
<tr>
<td>DEQ 4 {As[t, u], Bs[t, u], Ss[t, u], dplusBs[t, u], dplusSs[t, u]}</td>
<td>{As^{(0,1)}[t, u], Bs^{(0,1)}[t, u], Ss^{(0,1)}[t, u]}</td>
<td>{As^{(0,2)}[t, u]}</td>
</tr>
<tr>
<td>DEQ 5 {As[t, u], Ss[t, u], dplusBs[t, u], dplusSs[t, u]}</td>
<td>{As^{(0,1)}[t, u]}</td>
<td>({}</td>
</tr>
</tbody>
</table>

- DEQ 1: Given $ Bs(u) $ solve for $ Ss(u) $
- DEQ 2: Given $ Bs(u), Ss(u) $ solve for $ dplusSs(u) $
- ...
- Extra equations for $ \frac{da_4}{dt} \quad dB_s(t, u) $
Holography

\[T_{\nu}^{\mu} = T_{\nu}^{\mu}(t, a_4, b_4) \]

- Time evolve 5D metric
- Extract metric components: \((a_4(t), b_4(t))\)
- Get field theory hydro quantities: \((\epsilon(t), P_T(t), P_L(t))\)
Holography: Energy Density Evolution
Holography: Pressures

P_T vs tT

P_L vs tT
Attractor: Energy Density Exponent f

Bjorken Hydro: \[\epsilon \sim t^f(t) \]

\[f(\tau) = \tau \partial_\tau \ln \epsilon = -\frac{4}{3} + \frac{16C_\eta}{9\tau \tilde{T}} + \frac{32C_\eta C_\pi (1 - C_\lambda)}{27\tau^2 \tilde{T}^2} \]
Attractor: Pressure Anisotropy \[\Delta P = P_L - P_T \]
Attractor: Entropy Density

\[\sigma(\tau) := \frac{\hat{S}(\tau)}{2\pi^4 T_{\text{ideal}}^3(\tau)} = \frac{A_{\text{AH}}(\tau)}{\pi^3 \Lambda^2 A} \]
Speed of Sound

\[c^2 = \left(\frac{\partial P}{\partial \rho} \right)_s \]
Speed of Sound

\[c^2 = \left(\frac{\partial P}{\partial \rho} \right)_s \]

How to get derivatives at constant entropy?

\[d\varepsilon|_\sigma, \quad dP_{T/L}|_\sigma \]
Some Attempts of Calculating the Speed of Sound

\[c^2 = \left(\frac{\partial P}{\partial \rho} \right)_s \]

- The naïve one:
 - completely ignores entropy
 - separately for every curve
 - late times: entropy = const \(\rightarrow\) correct

\[\frac{dP}{d\epsilon} = \frac{dP}{dt} \left(\frac{d\epsilon}{dt} \right)^{-1} \]

- The “good intentions” idea:
 - also ignores entropy
 - introduces idea of derivative between curves
 - also good for late times
 - lead to the current procedure
Derivatives at $\sigma = \text{const}$ \quad $d\epsilon|_{\sigma}$, \quad $dP_{T/L}|_{\sigma}$

We have:

\[
\begin{array}{c}
\epsilon(t_i) \\
\epsilon(\sigma(t_i)) \\
P_{T/L}(t_i) \\
P_{T/L}(\sigma(t_i)) \\
\sigma(t_i)
\end{array}
\]

For close by initial conditions:

\[
\epsilon(t_0) = \{\epsilon_0 - n\delta\epsilon, \ldots, \epsilon_0, \ldots, \epsilon_0 + n\delta\epsilon\}
\]
Noronha Plot 1 (b): , Λ from fitting ϵ
Derivatives at $\sigma = \text{const}$
Derivatives at $\sigma = \text{const}$

- Interpolate every curve $\epsilon(\sigma)$ $\epsilon(\sigma)$
- Get $\epsilon(\sigma_i)$ for universal grid
- Take derivatives between curves for constant σ_i
- Do the inverse and get back to t
- Same for $P_{T/L}$
Speed of Sound

\[c^2 = \left(\frac{\partial P}{\partial \rho} \right)_s \]

\[d\varepsilon|_\sigma, \quad dP_T/L|_\sigma \]
Methods Comparison

Orange: Derivatives at constant t,
Green: const normalized entropy density
Red: $\frac{dp}{dt} \frac{dt}{d\epsilon}$
Future Ideas / Plans

- Speed of sound attractor
- Scan phase diagram
 - introduce chem. potential

Future Ideas / Plans

- Speed of sound attractor
- Scan phase diagram
 - introduce chem. Potential
- Magnetic Field
- Calculation of speed of sound from correlation functions
 5D metric -> fluctuation on top -> holography -> speed of sound
 (Quasinormal Modes)
- Resurgence
 - find attractors
 - speed of sound?
\begin{align}
A(v, z) &= z^2 A_s(v, z) + \xi(v)^2 + \frac{2\xi(v)}{z} + \frac{1}{z^2} \\
B(v, z) &= z^4 B_s(v, z) - \frac{2z^3}{9v^3} \left(3v^2 \xi(v)^2 + 3v \xi(v) + 1\right) + \frac{z^2(2v \xi(v) + 1)}{3v^2} - \frac{2z}{3v} - \frac{2 \log(v)}{3} \\
S(v, z) &= z^3 S_s(v, z) + \frac{3v \xi(v) + 1}{3v^{2/3}} + \frac{z^2(9v \xi(v) + 5)}{81v^{8/3}} - \frac{z}{9v^{5/3}} + \frac{v^{1/3}}{z}
\end{align}

\begin{align}
\bar{\kappa} \langle T_{00} \rangle &= \frac{1}{4} \left(2B^2 \log(\Lambda L) - 3a_4(\tau)\right) \\
\bar{\kappa} \langle T_{11} \rangle &= \langle T_{22} \rangle = -\frac{a_4(\tau)}{4} + b_4(\tau) + \frac{1}{12} \left(-\frac{2}{\tau^4} + 6B^2 \log(\Lambda L) - 3B^2\right) \\
\bar{\kappa} \langle T_{33} \rangle &= -\frac{3\tau^4}{12\tau^2} \left(a_4(\tau) + 8b_4(\tau)\right) - 6\tau^4 B^2 \log(\Lambda L) + 4
\end{align}