
Graduate Qualifying Exam
 

Department of Physics & Astronomy, University of Alabama 

6 January 2015 and 18 August 2015 

General Instructions 

•	 No reference materials are allowed. 

•	 Do all your work in the corresponding answer booklet. 

•	 On the cover of each answer booklet, make sure to write your assigned number and 
the part number/subject. 
Exams are graded anonymously, so do not write your name. 

•	 Turn in the question sheet for each part with the answer booklet. 

•	 120 minutes are allotted for each part, except for Thermal Physics (60 minutes). 

•	 Calculator policy: Use of a graphing or scientific calculator is permitted provided 
that it has none of the following capabilities: 

–	 programmable 

–	 algebraic operations 

– storage of ASCII data
 

Handheld computers, PDAs, and cellphones are explicitly prohibited.
 

1
 



Part I: Electricity and Magnetism 

Do any 5 of the 6 problems.
 
If you try all 6 problems, indicate clearly which 5 you want marked.
 
If there is no clear indication, the first 5 problems will be marked.
 

1. In	 a region of space free of currents, the electric and magnetic fields at t = 0 are 
determined to be: 

EE(Er, 0) = αx2 ĵ 

EB(Er, 0) = 0 

where α is a constant and ĵ is a unit vector in the y-direction. 

(a) What is the charge density at t = 0, ρ(Er, 0)? 

(b) Calculate the magnetic field as a function of time. 

(c) Calculate the electric field as a function of time. 

2. A spherical charge distribution has a charge density given by ρ(r) = ρ0e−r/λ and a total 
charge of Q. 

(a) Find ρ0 in terms of Q and λ. 

(b) Use Gauss’s law to find the magnitude of the electric field, E(r), and show that is 
has the correct form for r » λ, where λ is the characteristic length of the charge 
distribution. 

(c) Suppose we add a charge of magnitude 2Q and opposite sign at the origin. How 
does this change the electric field? 

Hint: Integrals can be done by integration by parts. 
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3. A hollow square has its corners at (a, 0), (0, a), (−a, 0), and (0, −a), as shown in the 
figure. The electric potential along the sides of the box is symmetric about both the x 
and the y-axes. The corners on the x-axis are at a potential V and the corners on the 
y-axis are at a potential −V . 

V"V"

#V"

#V"

x"

y"

(a,0)"

(0,a)"

(#a,0)"

(0,#a)"

Start with the following trial solution for the potential: 

φ(x, y) = A + Bx + Cy + Dx2 + Ey2 + F xy 

(a) Use the symmetry properties of the boundary conditions, and the Laplacian, to find 
the values of the constants A, B, C, D, E, and F , and write down the explicit form 
of the potential inside the box in terms of V , a, x, and y. 

(b) From the potential, calculate the electric field inside the box. 
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4. The figure below shows the cross-section of a coaxial structure consisting of an inner 
conductor with radius a and an outer conducting shield of inner radius b and outer 
radius c. A total current I flows upward (out of the page) through the inner conductor 
and returns downward (into the page) through the outer shield. Assume the current 
density is uniform in both conductors. 

a"

b"

c"

(a) Find the magnetic field (magnitude and direction) as a function of radial distance, 
EB(ρ). 

(b) Sketch the magnitude of the magnetic field as a function of radial distance. 

(c) How would the solution be modified if a current 2I flows upward through the inner 
conductor while the returning downward current remains I? 
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5. A Rogowski Coil is constructed of a soft iron (magnetic permeability µ) torus of mean 
radius b and a circular cross-section of radius a = b/8. It is wound along its entire diam­
eter with a thin wire such that the number of turns per unit length is n. A wire passing 
through the hole in the torus carries a time-varying current I(t) = I0 cos(ωt). (You 
may assume that the current changes slowly enough that the quasistatic approximation 
holds.) 

b"

a"

I(t)"

(a) Find the magnetic field strength, HE (t), inside the torus. 

(b) Find the induced EMF in the coil. 

6. Consider a source-free, conductive medium with constant permittivity e and permeability 
µ. 

(a) Assuming that the medium is ohmic, with a constant conductivity σ, write down 
the differential form of Maxwell’s equations for the electric field EE and the magnetic 
field BE , in such a medium. 

(b) Derive the wave equation for the electric field in such a medium. 

(c) Solutions to this equation are damped plane waves. Consider such a wave traveling 
in the positive z-direction, with an electric field given by 

i(αz−ωt) −βz ˆEE(z, t) = E0e e i 

where α and β are real. Find the damping factor β in terms of ω, σ, e, and µ. 

Recall that for a vector field AE: 

v× (v× AE) = v(v · AE) −v2AE
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Part II: Quantum Mechanics 

Do any 5 of the 6 problems.
 
If you try all 6 problems, indicate clearly which 5 you want graded.
 
If there is no clear indication, the first 5 attempted problems will be graded.
 

1. We consider a 1-dimensional quantum mechanical system with the Hamiltonian, 

n2 ∂2 

H(t, x) = − + V (t, x),
2m ∂x2 

where V (t, x) is a real function of the time t and and the position x. The wavefunction 
Ψ obeys the Schrödinger equation 

∂ 
in Ψ(t, x) = H(t, x)Ψ(t, x). 
∂t

(a) For the wavefunction, we define the probability density (ρ) and the current (J) as   
n ∂Ψ ∂Ψ∗ 

ρ(t, x) = Ψ ∗ Ψ and J(t, x) = Ψ ∗ − Ψ . 
2im ∂x ∂x 

Show that 
∂ρ ∂J 

+ = 0,
∂t ∂x 

and explain the physical significance of this relationship. 

(b) When the potential of the system V is time-independent, we decompose the wave 
function as Ψ(t, x) = f(t)u(x). Derive the time-independent Schrödinger equation 
(eigenvalue equation) for u(x). 

(c) When the Hamiltonian is time-independent, derive the equation  
∂2 

n2 + H2 Ψ(t, x) = 0. 
∂t2 

(d) By applying the Einstein relation in the theory of relativity to the Hamiltonian 
squared, H2 = p2c2 + m2c4, where p is the momentum operator, and m is the mass 
of the particle, derive the relativistic wave equation satisfied by Ψ(t, x). 

2. In a 2-dimensional system, an electron of mass m is trapped in an infinite potential well,  
0 for 0 ≤ x ≤ L and 0 ≤ y ≤ L 

V (x, y) = ∞ otherwise 

(a) Write the solution of the time-independent Schrödinger equation in the region inside 
the well. 
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(b) Determine the energy spectrum of the system. 

(c) Find the wavelength of the absorbed photon when the electron is excited from the 
ground state to the 2nd excited state. 

3. A particle of mass m propagates in the positive x-direction under the influence of the 
potential 

0 (x ≤ 0)
V (x) = ,−V0 (x > 0) 

where V0 > 0, and the energy of the particle is E > 0. 

(a) Express the wavefunction in the region x ≤ 0 in terms of the given quantities. 

(b) Express the wavefunction in the region x > 0 in terms of the given quantities. 

(c) Calculate the transmission coefficient, T , and express it in terms of E and V0. 

(d) Find the energy of the particle which gives R = 1
4 , where R is the reflection coeffi­

cient. 

4. In quantum mechanics, the spin operators are defined as 

n n n 
Sx = σx, Sy = σy, Sz = σz,

2 2 2
 

where σx,y,z are Pauli matrices given by
 

0 1 0 −i 1 0 
σx = , σy = , σz = . 

1 0 i 0 0 −1 

(a) Verify that the spin operators satisfy the following algebra, 

[Sx, Sy] = inSz, [Sy, Sz] = inSx, [Sz, Sx] = inSy, 

(b) Defining the total spin operator as S2 = S2 + S2 + S2, verify [S2, Sz] = 0. x y z 

(c) The relation [S2, Sz] = 0 (more generally, finding independent operators which 
commute with each other) is of special importance in quantum mechanics. Explain 
why. 

(d) Consider a composite state which consists of two spin-1/2 particles. What is the 
spin of this composite state? Consider all possibilities. 

5. We consider a system with only two states based on the Hamiltonian, 

−1 0 
H0 = E0 ,

0 2 

with E0 > 0. 

(a) Determine the two normalized eigenstates in the form of column vectors and the 
corresponding eigenvalues. 
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  (b) If the system is perturbed so that the Hamiltonian is H = H0 + H1, where 

1 2 
H1 = e	 (1)

2 3 

with 0 < e « E0, what are the energy eigenvalues in the first order perturbation 
with respect to e/E0 « 1. 

(c) Diagonalizing the total Hamiltonian, find the exact eigenvalues. 

(d) Expand the exact solutions of part (c) with respect to	 e/E0 « 1 and verify the 
results obtained in part (b). 

6. Consider a quantum mechanical system with three possible orthogonal states, A, B and 
C given by ⎛	 � ⎞ ⎛ � ⎞⎛ ⎞1 3	 3− √2 8	 8 

3 ⎜ ⎟	 ⎜ ⎟⎝ ⎠ 1	 1|ψA) = , |ψB ) = ⎝ √ ⎠ and |ψC ) = ⎝ − √ ⎠ . 2 2 2	 2 2 
1	 10 √	 √ 
2	 2 

In this system, the normalized energy eigenstates are ⎛ ⎞ ⎛ ⎞	 ⎛ ⎞ 
1 0	 0 ⎝ ⎠ ⎝ ⎠	 ⎝ ⎠|ψ1) = 0 , |ψ2) = 1 and |ψ3) = 0 , 
0 0 1 

and the corresponding eigenvalues are given by E1 = E0, E2 = 2E0 and E3 = 3E0 with 
E0 > 0. 

(a) If the wavefunction at time t = 0 is found to be |ψ(0)) = |ψC ), express the wave-
function |ψ(t)) at an arbitrary time t. 

(b) For the state in part (a), express the probability to find the state A at a time t > 0. 

(c) For the state in part (a), what is the probability to find the state B at a time 
πnt = .
2E0 
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Part III: Classical Mechanics

Do any 5 of the 6 problems.
If you try all 6 problems, indicate clearly which 5 you want marked.
If there is no clear indication, the first 5 problems will be marked.

1. A plane is inclined at an angle φ to the horizontal. At time t = 0, a ball is thrown from
the bottom of the incline with an initial speed v0 at an angle of θ above the plane, with
θ + φ < π/2. Choose your axes to have x parallel and y perpendicular to the plane.
(You may neglect air resistance in this problem.)

ɸ"
Θ"

v0"

(a) Find the position of the projectile at time t (prior to it making contact with the
plane again).

(b) When the projectile makes contact with the plane again, show that it lands a
distance from its launch point given by:

R =
2v20 sin θ cos(θ + φ)

g cos2 φ

(c) For fixed v0 and φ, find the launch angle which produces the maximum range along
the plane, and show that this angle is given by:

θmax =
π

4
− φ

2

You may find the following trigonometric identities useful in this problem:

sin(A±B) = sinA cosB ± cosA sinB

cos(A±B) = cosA cosB ∓ sinA sinB
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2. A double Atwood’s machine is constructed as shown in the diagram below.	 The top 
pulley is fixed and a string of length L1 is passed over it. One end of this string is 
attached to a mass 5m, while the other end supports a second pulley. A string of length 
L2 is passed over this second pulley, with a mass of 3m at one end and 2m at the other 
end. Assume both pulleys are frictionless and massless. 

Choose a suitable pair of generalised coordinates and construct the Lagrangian for this 
system. Find the equations of motion for the three masses and solve them to find the 
acceleration (magnitude and direction) of the 5m mass. 

3. Two equal masses m are connected by a massless string of length L that passes through 
a hole in a frictionless horizontal table, such that one mass slides around on the table, 
while the other mass hangs below the table, and can move vertically up or down. 

(a) Using as generalised coordinates r and φ, the polar coordinates describing the po­
sition of the mass on the table, construct the Lagrangian for this system and find 
the equations of motion. 

(b) Show that the φ equation implies the conservation of angular momentum. Express 
φ̇ in terms of the angular momentum f and use this to eliminate φ̇ from the ra­
dial equation, such that the radial equation becomes a function only of r (and its 
derivatives). 

(c) Now	 show that there exists a solution where the mass on the table moves in a 
circular path with constant radius r0, and find r0 in terms of l, m, and g. 
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4. As shown in the diagram below, two masses are joined by two springs, with one spring 
connected to a wall. The masses are free to slide on a perfectly frictionless horizontal 
surface. Let x1 and x2 be the displacement of each mass from its equilibrium position. 

Consider the case where both springs have the same spring-constant, k1 = k2, and the 
masses are equal, m1 = m2. Find the frequency of oscillation and the relative amplitudes 
and phases of the motion for the normal modes of this system. 

5. A boat (mass m) is launched on a lake with initial speed v0. It moves in a straight line, 
but experiences a slowing force due to the water of F (v) = −αeβv, where α and β are 
constants with appropriate dimensions. 

(a) Find the speed of the boat as a function of time, v(t). 

(b) Find the time taken before the boat comes to rest. 

(c) Find the distance travelled by the boat before it comes to rest, and show that this 
distance is: 

m   
d = 1 − (1 + βv0)e 

−βv0

αβ2

Note: you may find the following standard integral useful: 

ln x dx = x ln x − x 

6. A rectangular block of mass m, uniform density ρB , cross-sectional area A, and height 
h, is floating in a liquid of uniform density ρL. The block is oriented such that the 
cross-sectional area A is parallel to the liquid surface. 

(a) At equilibrium, what fraction of the block’s volume is below the liquid level? 

(b) Find the period of small oscillations of this floating block about its equilibrium 
position. 
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Part IV: Thermodynamics 

Do any 2 of the 3 problems.
 
If you try all 3 problems, indicate clearly which 2 you want graded.
 
If there is no clear indication, the first 2 attempted problems will be graded.
 

1. A small hole is put in a container which holds a monatomic ideal gas. Particles of mass 
m exit the container (to vacuum) with a speed distribution of 

2 

2kT P (v) = C v3 e − mv 
, 

where T is temperature, k is Boltzmann’s constant and C is a normalization constant. 
You may find the following integral useful: 

∞ 1 n + 1 2n −xx e dx = Γ 
2 20 

where Γ(m) = (m − 1)! for integer values of m. 

(a) What value of C is required for P (v) to be a proper probability density? 

(b) What is the most probable value of the speed of the particles leaving the container? 

(c) What is the rms speed of the particles leaving the container? 

(d) What is the mean kinetic energy of the particles leaving the container? 

(e) Given that the gas of N particles in the container has an initial temperature of Ti, 
show that when an infinitesimal number dN of particles leave the container, the 
temperature of the gas goes down by an infinitesimal amount 

1 dN 
dT = Ti

3 N 

(f) If the initial number of particles in the container is N and the initial temperature 
of the gas is Ti, what is the final temperature of the gas in the container after half 
of the particles have leaked out? 

2. A toy Stirling engine operates on n moles of air between the temperatures of TL and TH . 
The Stirling cycle consists of the following four stages: 

i. An isothermal (constant temperature) compression at temperature TL from volume 
V1 to volume V2 

ii. An isochoric (constant volume) heating at volume V2 from temperature TL to tem­
perature TH 

iii. An isothermal (constant temperature) expansion at temperature TH from volume 
V2 to volume V1 
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iv. An isochoric (constant volume) cooling at volume V1 from temperature TH to tem­
perature TL 

You can assume that air is an ideal, diatomic gas. 

(a) Sketch the p-V diagram for this cycle. 

(b) Find an analytic expression (in terms of the given quantities and the gas constant 
R) for the net work done by the gas per cycle? 

(c) Find an analytic expression (in terms of the given quantities and the gas constant 
R) for the heat absorbed by the gas per cycle? 

(d) If the engine operates between 17◦C and 67◦C, and V1/V2 = 2, what is its efficiency? 
How does it compare to the theoretical maximum efficiency of an engine operating 
under the same physical conditions? 

3. Consider a system of	 N classical, distinguishable, and non-interacting particles. The 
states of a single particle have energy en = ne and are n-fold degenerate, with e > 0 and 
n = 1, 2, 3, . . . . The system is in contact with a thermal reservoir at temperature T . 

(a) Find the partition function for this system.	 Hint: The following series, and its 
derivatives, may be of use: 

∞0 1 n x = 
1 − x 

1 

(b) Obtain an expression for the internal energy per particle as a function of tempera­
ture. 

(c) Obtain	 an expression for the entropy per particle as a function of temperature. 
What is the value of the entropy per particle in the limit of high temperature 
(T >> e/kB)? 
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