
Graduate Qualifying Exam
 

Department of Physics & Astronomy, University of Alabama 

10-11 January 2013 

General Instructions 

•	 No reference materials are allowed. 

•	 Do all your work in the corresponding answer booklet. 

•	 On the cover of each answer booklet, make sure to write your assigned number and 
the part number/subject. Exams are graded anonymously, so do not write your name. 

•	 Turn in the question sheet for each part with the answer booklet. 

•	 120 minutes are allotted for each part, except for Thermal Physics (60 minutes). 

•	 Calculator policy: 
Use of a graphing or scientific calculator is permitted provided that it has none of the 
following capabilities: 

–	 programmable 

–	 algebraic operations 

– storage of ASCII data
 

Handheld computers, PDAs, and cellphones are explicitly prohibited.
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Part I: Electricity and Magnetism 

Do any 5 of the 6 problems.
 
If you try all 6 problems, indicate clearly which 5 you want marked.
 
If there is no clear indication, the first 5 problems will be marked.
 

1. In the ground state of the H-atom the nuclear charge can be treated in first approxi­
mation as a point charge centered at the origin and an electron density of:   

e 2r 
ρe(fr) = − exp − 

πa3 a

Here a is the Bohr radius, r = |fr|, and e is the elementary charge. 

(a) Determine the electric field strength E and the potential Φ as a function of r. 

(b) Discuss the two limiting cases r « a and r » a. 

Hint: you may find the following useful:    R n  Rd n −βx dx = −βx dxx e − e 
dβ0 0 

2. Two concentric metal shells with radii R1 and R2 (R1 < R2) have electric potentials 
Φ1 and Φ2 respectively. Determine the potential Φ(r) everywhere in space.
 

Hint: The Laplace operator in spherical coordinates is given by:
       
1 ∂ ∂ 1 1 ∂ ∂ 1 ∂2 

�2 2 = r + sin θ + 
r2 ∂r ∂r r2 sin θ ∂θ ∂θ sin2 θ ∂φ2

3. In the figure shown below, a generator G with an adjustable frequency is connected to 
a resistor with resistance R = 100 Ω , two inductors with inductances L1 = 1.7 mH 
and L2 = 2.3 mH, and three capacitors with capacitances C1 = 4.0 µF, C2 = 2.5 µF 
and C3 = 3.5 µF. 
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(a) Determine the resonance frequency of the given circuit. 

(b) Explain briefly what happens to the resonance frequency if the resistance	 R is 
increased. 

(c) Explain briefly what happens to the resonance frequency if the capacitor with 
capacitance C3 is removed from the circuit. 

4. The figure below (which is not to scale) shows an electric quadrupole. It consists of two 
dipoles with dipole moments that are equal in magnitude but opposite in direction. 
Show that the magnitude of the electric field E on the axis of the quadrupole for a 
point P at a distance z » d from its center is given by: 

3Q
E = 

4π�0z4 

Here Q = 2qd2 is the quadrupole moment of the charge distribution. 

5. The current density Jf inside a long, solid, cylindrical wire of radius a = 3.1 mm is in 
the direction of the central axis, and its magnitude varies linearly with radial distance 
r from the axis according to: 

r 
J(r) = J0 

a 

where J0 = 310 A/m2 . 

Derive an expression for the magnitude of the magnetic field as a function of r for 
0 ≤ r ≤ ∞ and calculate the magnitude at (a) r = 0, and (b) r = a. 
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6. Show by using Maxwell’s equations, that in the presence of a charge density ρ(fr, t) and 
current density fj(fr, t), the vector fields Ef and Bf in vacuum fulfill the inhomogeneous 
wave equations: 

1 ∂2 
2 − f fE = λ1(fr, t) 

c2 ∂t2 

1 ∂2 
2 − f fB = λ2(fr, t) 

c2 ∂t2 

Determine the functions fλ1(fr, t) and fλ2(fr, t) in terms of ρ(fr, t) and fj(fr, t).
 

Hint: you may find the following relation useful:
 

× f f 2 f× ( A) = ( · A) − A 
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Part II: Quantum Mechanics 

Do any 5 of the 6 problems.
 
If you try all 6 problems, indicate clearly which 5 you want marked.
 
If there is no clear indication, the first 5 problems will be marked.
 

1. A positron is a particle with the same mass as an electron but with opposite charge. 
Electrons and positrons can form bound states called positronium in which the electron 
and positron orbit about a common center of mass. Assuming the particles travel in 
circular orbits, use the Bohr quantization condition on the angular momentum to 
calculate the energy levels for positronium. Given that the energy of the ground state 
of the hydrogen atom is 13.6 eV, and that the Bohr radius of the hydrogen ground 
state is 0.053 nm, deduce the values of the ground state energy (in eV) and radius (in 
nm) for positronium. 

(Note: the mass of the electron is 0.511 MeV/c2 and the mass of the proton is 
938 MeV/c2) 

2. At t = 0 a particle of mass m in a harmonic oscillator potential (with frequency ω) is 
in the initial state 

1 2 |ψ) = √ |ψ0) + √ |ψ1)
5 5 

where |ψ0) and |ψ1) are the normalized eigenfunctions for the ground state and first 
excited state, respectively:   1 2mω −y(y|ψ0) =

4 
exp

πn 2 
√  mω  1 −y2 

(y|ψ1) = 2
4 
y exp

πn 2 

 
mωwhere y = n x
 

Hint: in the following question, you may find the following integrals useful:
 

∞ n ∞d2n −αx2 −αx2 
x e dx = − e dx 

dα−∞ −∞ ∞ π−αx2 
e dx =

α−∞ 

(a) Find the expectation value of the energy in the state |ψ(0)). 
(b) Find |ψ(t)). Is this a stationary state? Explain your answer. 
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(c) Evaluate the expectation value (ψ(t)|x|ψ(t)). What is the frequency of oscillation 
of this expectation value? 

3. Consider the wave function: 

−λ |x| −iωt ψ(x, t) = A e e 

(a) Normalize ψ(x, t) to determine the value of the coefficient A. 

(b) Determine the expectation values of x and x2 . 

(c) Find the standard deviation, σ, of x. Sketch the graph of |ψ|2 as a function of x 
and mark approximately the points (< x > +σ) and (< x > −σ). What is the 
probability that the particle will be found outside of this range? 

4. The y-component of the spin operator is 

n 0 −i 
Sy = . 

2 i 0 

(a) Find the eigenvectors of this operator and their corresponding eigenvalues.
 

(b) An electron is in the spin state 

√ 

χ = 
1 √ 
3 

2 
−1 

. 

If a measurement of the y-component of the spin is made, what is the probability 
of finding a value of 

1 
+ n ? 
2 
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5. A particle of mass m is in an asymmetrical one-dimensional infinite square-well (for 
0 ≤ x ≤ L) with a perturbation term VI (x):  

V0 , 0 < x < L/2 
VI (x) =

0 , x < 0 and x > L/2 

where V0 is small compared to the unperturbed energies of this system. 

(a) First determine the energy levels and wavefunctions for the unperturbed states 
(i.e. the asymmetrical one-dimensional infinite square-well) . 

(b) Now using perturbation theory, calculate to first order the energy values of the 
states once the perturbing potential has been applied. 

(c) Determine the first-order corrected wavefunction for the ground state of the per­
turbed system.
 
Hint: you may find the following trig identities useful:
 

sin(A ± B) = sin A cos B ± cos A sin B 

cos(A ± B) = cos A cos B = sin A sin B 

6. In scattering theory, the differential cross section as a function of the scattering angle 
θ can be expressed as: 

dσ 
= |f(θ)|2 

dΩ 

where the scattering amplitude f(θ) can be expanded in terms of partial waves as: 

∞0 
f(θ) = 

1 
(2f + 1)e iδ£ sin δPPP(cos θ)

k 
P=0 

where δP is the phase shift for the fth partial wave and PP(cos θ) are the Legendre 
polynomials, of which the first few are: 

P0(x) = 1 

P1(x) = x 

P2(x) = 
1
(3x 2 − 1)

2

P3(x) = 
1
(5x 3 − 3x)

2
. . . 
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These are obtained from the recursion relation: 

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) 

In the scattering of a particle of energy E = n2k2/2m by a nucleus, an experimenter 
finds a differential cross section 

dσ 1   
= 0.86 + 2.55 cos θ + 2.77 cos2 θ

dΩ k2

(a) What partial waves are contributing to the scattering, and what are their phase 
shifts at the given energy? 

(b) Find the total cross section. 
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Part IIIa: Classical Mechanics 

Do any 5 of the 6 problems.
 
If you try all 6 problems, indicate clearly which 5 you want marked.
 
If there is no clear indication, the first 5 problems will be marked.
 

1. A block of wood of mass m slides on a horizontal surface that has been lubricated with 
a particular oil such that the block suffers a viscous resistance that is proportional to 
the speed to the power 3/2, namely f(v) = −cv3/2 . 

(a) Calculate the dimensions of the proportionality constant c. 

(b) Assuming that the initial speed of the block is	 v0 at t = 0, calculate v(t) and 
describe the motion. In particular, specify what happens to v(t) in the limit of 
t → ∞. 

(c) Assuming that the block starts from x0 = 0 at t = 0, calculate its position as a 
function of time, x(t). In particular, calculate x(t) in the limit of t → ∞. 

2. Determine whether each of the forces below is conservative or non-conservative.	 For 
those which are conservative, find the corresponding potential energy U . 

(a)	 F = k (3x, 2y, z), 

(b)	 F = k (−z, 0, x), 
(c)	 F = k (x, z, y), 

where k is a constant of appropriate dimensions. 
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3. The figure below shows a massless wheel of radius R, which is free to rotate around 
a frictionless, horizontal axle. A point mass M is glued to the edge of the wheel, and 
another point mass m hangs from a massless string wrapped around the perimeter of 
the wheel. 

m

M

θ
R

(a) Obtain the total potential energy of the system of two masses (m and M) as a 
function of the angle θ (measured with respect to the vertical). Assume that for 
θ = 0 both masses are at the same height, which also defines the reference point 
for the potential energy. 

(b) Use this to find the	 values of m and M for which there are any positions of 
equilibrium and discuss their stability. 
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4. A particle of mass m experiences a restoring force which is proportional to its displace­
ment from the equilibrium position, −kx, and a retarding force which is proportional 
to its velocity, −cẋ, where k and c are the respective proportionality constants. 

(a) Write down the equation of motion for this particle. 

(b) Assuming that the particle starts at its position of maximum displacement, show 
that in the underdamped case, the solution has the general form: x(t) = Ae−βt cos(ω1t), 
and find the parameters β and ω1 in terms of the physical parameters m,k,c. Give 
the condition for underdamping. 

Now consider a specific case of underdamped motion. Suppose that an undamped 
oscillator has a natural period τ0. When a damping force is added, the new period of 
the underdamped motion is τ1 and it is found that in the time interval τ1, the amplitude 
decays to 1/e of its initial value. 

(c) Find an expression for the damping factor β in terms of the undamped frequency 
ω0. 

(d) Calculate the ratio of the damped to undamped periods, τ1/τ0. 

(e) What fraction of the total initial energy has been	 dissipated through friction 
during this time interval of τ1? 
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5. A particle is confined to move on the inner surface of a circular cone with its axis on 
the vertical z-axis, vertex at the origin (pointing down), and half-angle α. 

α

(a) Obtain the Lagrangian for this system in terms of the spherical coordinates r (the 
radial distance of the particle from the origin) and azimuthal angle φ. 

(b) Find the two equations of motion. Interpret the φ equation in terms of the z-
component of angular momentum fz and show that fz is conserved. Use this to 

˙eliminate φ from the r equation in favor of the constant fz. 

(c) Find the value	 r0 of r at which the particle can remain in a horizontal circular 
path. 
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6. A bead of mass m is threaded on a frictionless circular wire hoop of radius R. The hoop 
lies in a vertical plane, and is forced to rotate about its vertical diameter with constant 
angular velocity φ̇ = ω, as shown in the figure below. The bead’s position on the hoop 
is specified by the angle θ measured up from the vertical. Obtain the Lagrangian for 
the system in terms of the generalized coordinate θ and find the equation of motion for 
the bead. Find any stationary solutions, i.e. points where the bead is in equilibrium 
at some angle. 

ω

θ
R

m
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Part IIIb: Thermal Physics 

Do any 2 of the 3 problems.
 
If you try all 3 problems, indicate clearly which 2 you want marked.
 
If there is no clear indication, the first 2 problems will be marked.
 

1. Say that the entropy for some thermodynamic system is given by the function 
√ 

S(N, E, V ) = Nk log(V/V0) + NαE , 

where α and V0 are constants. 

(a) Is the ideal gas formula PV = NkT valid for this system? 

(b) Obtain the expression for the chemical potential of this system as a function of 
N, T and V . 

(c) By what factor does the number of accessible states increase when the temperature 
is doubled (while N and V are held fixed)? 

2. Two identical ideal gases are placed in two chambers which have a common wall. Gas A 
has 1023 particles with an initial temperature of 300 oK and gas B has 3×1023 particles 
with an initial temperature of 500 oK. Both gases are initially at one atmosphere of 
pressure. 

(a) What is the ratio of the volume of B to the volume of A? 

(b) If heat can pass through the common wall (and nowhere else), what is the final 
temperature of the gases after they reach thermal equilibrium? 

(c) What are the final pressures of the two gases after they reach thermal equilibrium? 

(d) Say that a crack is created in the common wall as a result of the pressure difference, 
which then allows particles to flow from one chamber to the other. What is the 
net number of particles that pass from A to B? 

3. A monatomic ideal gas initially occupies a volume	 V at a temperature T . It then 
is i) isothermally compressed to volume V/2, and ii) adiabatically expanded back to 
volume V . 

(a) What is the final temperature of the gas? 

(b) What is the total change in entropy of the gas? 
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