

Hydrodynamics of Globally Rotating Fluids Via Holography

Markus A. Garbiso

Outline

- Understanding the Field
- Holography and Why?
- Current Research Globally Rotating Fluid
- Current Research QNMs
- Current Research Hydrodynamics
- Current Results n++
- Current Open Problem and Discussion

- Holography (AdS(Anti-de Sitter)/CFT Duality [Maldacena '99])
- QGP
 - o RHIC [Braun-Munzinger et al. '01]
 - Voticity Measured <u>[The STAR Collaboration '17]</u>
- Strongly Coupled Systems with Broken Symmetries
 - Non-relativistic Systems (Hořava Gravity) [Garbiso et al '19]
 - Systems with strong magnetic fields [Cartwright et al '19] [Ammon et al '17]
 - Rotating fluids from holography? [Hawking '99] [Reall et al '99]

- Concrete realization of the holographic principle: AdS/CFT
 - Strongest Statement: Type IIB Superstring theory AdS5×S5 "Gravity"/ N=4 SYM w/ SU(N)
 "CFT" [Maldacena '99]
 - Weakest Statement (large N limit): Supergravity AdS5×S5 "Gravity"/Strongly Coupled QFT "CFT"
 - o Gravity/Fluid (large N limit) [Bhattacharyya et al '08] [Bhattacharyya '09]
 - Gravity/QGP [Busza et al '18]
- "Little Bangs" at RHIC
 - Understanding the fluid highly vortical **strongly coupled** fluids (QGP) demands explanation. [Busza et al `18]
- Mysteries of Higher Dimensional Gravity (Final State of Kerr AdS)

Past Research - Hořava

- Using Holography: Non-Relativistic Gravity Theory
- Non-Relativistic Gravity Theory
 - O Hořava Gravity [Hořava '09] $t \longrightarrow ilde{t}(t), x^i \longrightarrow ilde{x}^i(t,x^i)$
 - Einstein-Aether Gravity [Jacobson et al '01]
 - Equivalent Theories [Bhattacharyya '13]
 - Simultaneity and Causality
- (3+1)D black brane: Dual to a (2+1)D sheet of non-relativistic material

Past Research - Einstein- Aether Theory

$$S_{ ext{aether}} = rac{1}{4\pi G_{ae}} \int d^4x \sqrt{-g} igg(R - 2\Lambda + c_4 (u^\mu
abla_\mu u^
u) (u^\sigma
abla_\sigma u_
u) rac{ ext{[Janiszewski `15]}}{ ext{[Bhattacharvya `13]}} - c_3 (
abla_\mu u^
u) (
abla_
u^\mu) - c_2 (
abla_\mu u^\mu)^2 - c_1 (
abla^\mu u^
u) (
abla_\mu u^
u) igg)$$

aether vector field and khronon scalar field

$$u_{\mu}=rac{\partial_{\mu}\phi}{\sqrt{-(\partial_{
u}\phi)(\partial^{
u}\phi)}}$$

coupling constants

$$lpha = rac{c_4}{1-c_3} = 0 \hspace{0.5cm} 1 + \lambda = rac{1+c_2}{1-c_3} \hspace{0.5cm} rac{G_H}{G_{ae}} = 1 + eta = rac{1}{1-c_3}$$

Previous Research RESULTS

- Is this black brane a linearly stable spacetime?
 - Yes, more **next slide**
- How do you perturb in this theory?

$$g^p_{\mu
u} = g_{\mu
u} + \epsilon \ h_{\mu
u}(x^\sigma) \ ,$$
 re there scale invariances? $\phi^p = \phi + \epsilon \ \chi(x^\sigma) \ ,$

- Are there scale invariances?
 - $_{\circ}$ YES wrteta and r_h
- Any connections to the relativistic version?

$$\begin{array}{lll} \circ & \text{Yes} & \omega_{\text{\tiny Horava}}^{\text{axial}} = \sqrt{1+\beta}\,\omega_{\text{\tiny Einstein}}^{\text{axial}} \\ \circ & \text{and} & \omega_{\text{\tiny Horava}}^{\text{\tiny polar}} = \sqrt{1+\beta}\,\omega_{\text{\tiny Einstein}}^{\text{\tiny polar}} \,\, \text{\textbf{MOSTLY}} \end{array} \quad \nu = r_h \omega/(2^{1/3}\,\sqrt{1+\beta})$$

Previous Research RESULTS

"Aether Modes"

$$u=r_h\omega/(2^{1/3}\sqrt{1+eta})$$

- RHIC & QGP
 - "Non-central collisions have angular momenta of the order of 1,000ħ, and the resulting fluid may have a strong vortical structure 2–4 that must be understood to describe the fluid properly." [The STAR Collaboration '17]
 - Modeling QGP plasma with strong vortical effects where effects are purely rotational
- Gauge/gravity and fluid/gravity
 - A new perspective on rotating strongly coupled fluids
 - How is bulk spacetime rotation encoded on the boundary fluid/field?
 - More QNMs, linear stability analysis?
- Final "AdS-Kerr State"?

Current Research - Theory

$$S=-rac{1}{16\pi}\int d^5x\sqrt{-g}\left(R+rac{12}{L^2}
ight)$$

5D MP AdS

$$ds^2 = -\left(1 + rac{r^2}{L^2}
ight)dt^2 + rac{dr^2}{G(r)} + rac{r^2}{4}ig((\sigma^1)^2 + (\sigma^2)^2 + (\sigma^3)^2ig) + rac{2\mu}{r^2}ig(dt + rac{a}{2}\sigma^3ig)^2$$

$$G(r) = 1 + rac{r^2}{L^2} - rac{2\mu(1-a^2/L^2)}{r^2} + rac{2\mu a^2}{r^4} \ \sigma^1 = -\sin\psi d heta + \cos\psi\sin heta d\phi \ \sigma^2 = \cos\psi d heta + \sin\psi\sin heta d\phi \ \sigma^3 = d\psi + \cos heta d\phi$$

Current Research - Theory (TBD) [Murata `09]

$$ds^2 = -\left(1+r^2
ight)dt^2 + rac{dr^2}{G(r)} + rac{r^2}{4}ig(4\sigma^+\sigma^- + (\sigma^3)^2ig) + rac{2\mu}{r^2}\Big(dt + rac{a}{2}\sigma^3\Big)^2 \,.$$

$$\sigma^{\pm}=rac{1}{2}(\sigma^1\mp i\sigma^2)$$

$$e_\pm=rac{1}{2}(e_1\pm ie_2)$$

$$\sigma^a e_b = \delta^a_b$$

$$egin{aligned} \xi_x &= \cos\phi \ \partial_{ heta} + rac{\sin\phi}{\sin heta} \partial_{\psi} - \cot heta \sin\phi \ \partial_{\phi} \ & egin{aligned} \mathcal{L}_{\xi_{lpha}}(\sigma^a) &= 0 \ & egin{aligned} \mathcal{L}_{\epsilon_{lpha}}(\sigma^a) &= 0 \ & egin{aligned} \mathcal{L}_{\epsilon_{l$$

$$L_lpha=i\xi_lpha\;,\;\;W_a=ie_a\;,\;\;\sum_{lpha=x}^zL_lpha L_lpha=L^2=W^2=\sum_{a=1}^3W_aW_a$$

$$[L_lpha,L_eta]=i\epsilon_{lphaeta\gamma}L_\gamma\;,\;\; [W_a,W_b]=-i\epsilon_{abc}W_c\;,\;\; [W_a,L_lpha]=0$$

Current Research - Linear Analysis

Irreducible Representation of SU(2): Wigner-D function

$$egin{align} L^2D^{\mathcal{J}}_{\mathcal{K}\mathcal{M}} &= \mathcal{J}(\mathcal{J}+1)D^{\mathcal{J}}_{\mathcal{K}\mathcal{M}} \ , \ L_zD^{\mathcal{J}}_{\mathcal{K}\mathcal{M}} &= \mathcal{M}D^{\mathcal{J}}_{\mathcal{K}\mathcal{M}} \ , \ W_3D^{\mathcal{J}}_{\mathcal{K}\mathcal{M}} &= \mathcal{K}D^{\mathcal{J}}_{\mathcal{K}\mathcal{M}} \ . \ & \ \mathcal{J} &= 0, 1/2, 1, \dots \ |\mathcal{K}| \leq \mathcal{J} \ |\mathcal{M}| = 0 \leq \mathcal{J} \ . \ & \ g^p_{\mu
u} dx^\mu dx^
u &= (g_{\mu
u} + \epsilon \ h_{\mu
u} + O(\epsilon^2)) dx^\mu dx^
u \end{aligned}$$

$$\dot{R}_{\mu
u}=rac{2\Lambda}{D-2}h_{\mu
u}\;\;\dot{R}_{\mu
u}=-rac{1}{2}
abla_{\mu}
abla_{
u}h-rac{1}{2}
abla^{\lambda}
abla_{\lambda}h_{\mu
u}+
abla^{\lambda}
abla_{(\mu}h_{
u)\lambda}$$

[Wald `84]

ex.
$$\phi = \sum_{\mathcal{K}} \phi^{\mathcal{K}}(r,t) D^{\mathcal{J}}_{\mathcal{K}\mathcal{M}}(heta,\phi,\psi)$$

perturbations of different ((\mathcal{J},\mathcal{M}), \mathcal{K}) decouple [Murata et al `08]

Current Research - h++ Modes (TBD)

Current Results - QNMs - "h++" - Real vs Im

At large temperatures ie. $\,r_+/L \sim 100\,$

No Rotation

Note new modes close to imaginary axis from larger a.

Current Results - QNMs - "h++" - Real vs Im

Note that modes are not symmetric across Imaginary axis. Note higher J modes are more "unstable".

Current Research - Hydrodynamics [Cardoso et al. `14]

Rotation seemingly distinguishes a direction so does the **shear viscosity**, μ , change? Shear viscosity doesn't respect the "1/4 π " if anisotropy is induced. [Erdmenger et al. `11] [Critelli et al `14]

$$S=rac{1}{2\kappa_5^2}\int d^5x \left((R-2\Lambda)-rac{lpha^2}{2}{
m Tr}(F^2)
ight)$$

[Erdmenger et al. `11]

Current Results - Needed Calculations

Now, let's find the temperature of our black hole.

$$T=\kappa/2\pi=\sqrt{rac{r_{+}^{2}+1}{r_{+}^{2}\left(1-\Omega^{2}
ight)+1}}rac{2r_{+}^{2}\left(1-\Omega^{2}
ight)+1}{2\pi r_{+}}$$

Hydrodynamics requires large temperature limits and therefore implies " Ω L<1".

Furthermore, superradiant instabilities no longer apply [Cardoso et al. <u>`14]</u> [Murata `09], because extremality limit and faster than light limit coincide for .

Hydrodynamics - Large Temperature

Kubo Formula for shear viscosity

From papers [Son et al '02], we conjectured the expression to the right as a possible expression for η .

$$\eta = - \lim_{ar{\omega} o 0^+} rac{{
m Im} \, < T_{++} T_{++} >}{ar{\omega} / T} = - \lim_{ar{\omega} o 0^+} rac{{
m Im} \, h_{++}^{(4)} / h_{++}^{(0)}}{ar{\omega} / T} \ \sim - rac{T \, {
m vev}}{ar{\omega} \, {
m source}} igg|_{ar{\omega} = {
m small}}$$

Current Results - η++(recap)

$$r=\kappa/2\pi=\sqrt{rac{r_+^2+1}{r_+^2+1}}$$

$$T=\kappa/2\pi=\sqrt{rac{r_{+}^{2}+1}{r_{+}^{2}\left(1-\Omega^{2}
ight)+1}}rac{2r_{+}^{2}\left(1-\Omega^{2}
ight)+1}{2\pi r_{+}}$$

$$T=\kappa/2\pi=\sqrt{rac{r_{+}+1}{r_{+}^{2}(1-\Omega^{2})+1}rac{2r_{+}(1-\Omega^{2})+1}{2\pi r_{+}}} = \sqrt{rac{\chi^{2}}{r_{+}^{2}(1-\Omega^{2})+1}} = 0$$

$$\left.egin{aligned} \left.\chi^z
ight|_{r=r_+} = 0\ \left.\chi^z
ight|_{r=r_+} = 0\ \chi = \partial_t - 2\Omega\partial_\psi \end{aligned}$$

Current Results - η ++ @ (r+ = 100)

How does one model hyperon-like fields [Florkowski 19]

QNMs of probe fields

- positive integer spins?
- orbital spin & spin coupling?
- spinors

Finding eta legitimately.

I would like to express my gratitude for **The University of Alabama's** and

The University of Tokyo's financial

support.

I would also like to thank **Ochanomizu University**, **The University of Tokyo**, **Nihon University**, and **Kyoto University**for allowing me to visit and present my research at their campuses.

25

https://arxiv.org/pdf/1301.2826.pdf Flow and Viscosity in Relativistic Heavy Ion Collisions

https://arxiv.org/pdf/1905.11309.pdf Quasinormal modes for quarkonium in a plasma with magnetic fields

https://arxiv.org/pdf/1308.2672.pdf Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

https://arxiv.org/pdf/1401.2586.pdf Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume

https://arxiv.org/pdf/1510.04713.pdf Maxwell perturbations on asymptotically anti-de Sitter spacetimes: Generic boundary conditions and a new branch of quasinormal modes

https://arxiv.org/abs/1312.5323 Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS

https://arxiv.org/pdf/1505.04793.pdf Black holes with a single Killing vector field: black resonators

https://arxiv.org/pdf/0803.1371.pdf Stability of Five-dimensional Myers-Perry Black Holes with Equal Angular Momenta

https://arxiv.org/pdf/0901.2574.pdf Warped AdS5 Black Holes and Dual CFTs

https://arxiv.org/pdf/1302.1580.pdf Boundary Conditions for Kerr-AdS Perturbations

https://arxiv.org/pdf/1802.04801.pdf Heavy Ion Collisions: The Big Picture, and the Big Questions

https://arxiv.org/pdf/0904.2154.pdf Gravitational stability of simply rotating Myers-Perry black holes: tensorial perturbations

https://www.sciencedirect.com/science/article/pii/S0370269311003959?via%3Dihub Non-universal shear viscosity from Einstein gravity

https://arxiv.org/pdf/0803.1371.pdf Stability of Five-dimensional Myers-Perry Bla k Holes with Equal Angular Momenta