Stu	Num	Question	Unit	Solution	Answer
T	1	A car accelerates from zero to $30 \mathrm{~m} / \mathrm{s}$ in 10 seconds. Its acceleration is	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{a}=\mathrm{v} / \mathrm{t}=(30 \mathrm{~m} / \mathrm{s}) /(10 \mathrm{~s})=3 \mathrm{~m} / \mathrm{s}^{2}$	3
A	1	There is a 50 kg block on a frictionless, horizontal surface. A man pushes it with a force of 300 N . What is the acceleration of the block?	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{F}=\mathrm{ma} \rightarrow \mathrm{a}=\mathrm{F} / \mathrm{m}=(300 \mathrm{~N}) /(50 \mathrm{~kg})$	6
A	2	A man stands on a bathroom scale in an elevator, which reads 80 kg when the elevator is stationary. What would the reading be while the elevator is accelerating upward at $6 \mathrm{~m} / \mathrm{s}^{2}$? (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration.)	kg	$\begin{gathered} \text { Total acceleration }=a=g+6 \mathrm{~m} / \mathrm{s}^{2}=16 \mathrm{~m} / \mathrm{s}^{2} \\ 80 \mathrm{~kg} *(\mathrm{a} / \mathrm{g})=128 \mathrm{~kg} \end{gathered}$	128
A	3	A river 200 m wide flows with a current of $2.0 \mathrm{~km} / \mathrm{h}$. A woman rows her kayak across the river. Relative to the water, the kayak moves at $4.0 \mathrm{~km} / \mathrm{h}$ in the direction perpendicular to the river current. How far downstream does the river carry the kayak while being crossed?	m	Time to cross the river: $(0.2 \mathrm{~km}) /(4.0 \mathrm{~km} / \mathrm{h})=0.05 \mathrm{~h}$ $2000 \mathrm{~m} / \mathrm{h} * 0.05 \mathrm{~h}=100 \mathrm{~m}$	100
A	4	A car of mass 1800 kg is parked on a hill inclined at angle 30 degrees from the horizontal. What is the force of static friction on the car? (Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration.)	N	Friction force cancels gravity component along plane, $\mathrm{mg} \sin ($ theta $)=1800 * 10 *$ $0.5=9000$	9000
B	1	A meter stick has a mass of 100 g . A small 200 g mass is attached at the 80 cm mark. At which mark is the center of mass?	cm	$\begin{aligned} & (100 \mathrm{~g} * 50 \mathrm{~cm}+200 \mathrm{~g} * 80 \mathrm{~cm}) /(100 \mathrm{~g} \\ & +200 \mathrm{~g})=70 \mathrm{~cm} \end{aligned}$	70
B	2	A block with mass of 1 kg moving at a speed of $6 \mathrm{~m} / \mathrm{s}$ collides and sticks to a 2 kg block that is initially at rest. What is the speed of the two blocks after the collision?	m/s	$\begin{gathered} \mathrm{m}_{1} 1^{*} \mathrm{v}_{-} 1=\left(\mathrm{m}_{-} 1+\mathrm{m}_{2} 2\right)^{*} \mathrm{v} \\ 1 \mathrm{~kg} * 6 \mathrm{~m} / \mathrm{s}=(1 \mathrm{~kg}+2 \mathrm{~kg})^{*} \mathrm{v} \\ \mathrm{v}=2 \mathrm{~m} / \mathrm{s} \end{gathered}$	2

Stu	Num	Question	Unit	Solution	Answer
B	3	A ball is dropped from a height of 1.8 m onto a hard surface. What is the speed of the ball when it hits the surface? (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration.)	m / s	$\begin{aligned} & \text { Potential energy is converted to kinetic } \\ & \text { energy: } \mathrm{mgh}=(1 / 2) \mathrm{m} \mathrm{v}^{2} \\ & \rightarrow \mathrm{v}^{2}=\mathrm{g} * \mathrm{~h} * 2=10 * 1.8 * 2=36 \end{aligned}$	6
B	4	Two blocks, having masses 6 kg and 4 kg , respectively, hang vertically and are connected by a massless string that passes over a massless and frictionless pulley. When the blocks are released, what is the magnitude of the acceleration of the 4 kg block? (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration, and neglect air resistance.)	$\mathrm{m} / \mathrm{s}^{2}$	$\begin{gathered} \mathrm{F}=(6 \mathrm{~kg}+4 \mathrm{~kg}) * \mathrm{a}, \\ \mathrm{~F}=(6 \mathrm{~kg}-4 \mathrm{~kg}) * 10 \mathrm{~m} / \mathrm{s}^{2} \\ \rightarrow \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2} \end{gathered}$	2
C	1	If 200 g of water at $100^{\circ} \mathrm{C}$ is mixed with 50 g of water at $50^{\circ} \mathrm{C}$, calculate the equilibrium temperature of the mixture.	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Heat flow }=\mathrm{mc} \Delta \mathrm{~T} \text {. Total inward flow }=0 \\ & 50 \mathrm{~g} * \mathrm{c} *\left(\mathrm{~T}-50^{\circ} \mathrm{C}\right)+200 \mathrm{~g} * \mathrm{c}^{*}\left(\mathrm{~T}-100^{\circ} \mathrm{C}\right)=0 \\ & \rightarrow \mathrm{~T}=90^{\circ} \mathrm{C} \end{aligned}$	90
C	2	A planet has the same density as Earth and 9 times the Earth's radius. What is the acceleration of gravity on the planet? (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration.)	$\mathrm{m} / \mathrm{s}^{2}$	$\begin{aligned} & \mathrm{g}=\mathrm{G} \mathrm{M} / \mathrm{R}^{2} \\ & \mathrm{~g}_{-} 2 / \mathrm{g}_{1} 1=\left(\mathrm{M} _2 / \mathrm{M}_{1} 1\right)^{*}\left(\mathrm{R} _1 / \mathrm{R}_{-} 2\right)^{2} \\ & \left.\mathrm{M} _\mathrm{i}=(4 \mathrm{pi} / 3) \text { rho }\left(\mathrm{R} _\right)^{2}\right)^{2} \mathrm{R}_{1} \mathrm{i} \end{aligned}$	90
C	3	A solid metallic object, if dropped into a bath of mercury, becomes 60% submerged. What is the density of the metal? The density of the mercury bath is $13.6 \mathrm{~g} / \mathrm{cm}^{3}$	$\mathrm{g} / \mathrm{cm}^{3}$	$13.6 \mathrm{~g} / \mathrm{cm}^{3}$ times $0.6=8.16 \mathrm{~g} / \mathrm{cm}^{3}$	8.16
C	4	A ball is thrown at a vertical wall 30 meters away, with a velocity $30 \mathrm{~m} / \mathrm{s}$ at an angle of 45°. At what height above the starting point will it strike the wall? (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration.)	m	$\begin{gathered} \mathrm{v}_{\mathrm{x}}=30 \mathrm{~m} / \mathrm{s} * \cos 45=15 \operatorname{sqrt}[2] \\ \rightarrow \mathrm{t}=\mathrm{x} / \mathrm{v}_{\mathrm{x}}=\operatorname{sqrt}[2] \mathrm{s} \\ \mathrm{~h}=\mathrm{v}_{\mathrm{y}} * \mathrm{t}-\mathrm{gt}^{2} / 2=30-10=20 \end{gathered}$	20
D	1	A vehicle traveling at $36 \mathrm{~m} / \mathrm{s}$ slows at a constant rate of 4 $\mathrm{m} / \mathrm{s}^{2}$ until it stops. How much time elapses to stop?	S	$36 \mathrm{~m} / \mathrm{s}-\left(4 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{t}=0 \rightarrow \mathrm{t}=9 \mathrm{~s}$	9

Stu	Num	Question	Unit	Solution	Answer
D	2	A ball is thrown upward from the ground with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. What is the maximum height it reaches? (Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration, and neglect air resistance.)	m	$\begin{gathered} 10 \mathrm{~m} / \mathrm{s}-\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{t}=0 \rightarrow \mathrm{t}=1 \mathrm{~s} \\ \mathrm{~h}=(10 \mathrm{~m} / \mathrm{s})(1 \mathrm{~s})-0.5\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(1 \mathrm{~s})^{2} \\ \mathrm{~h}=5 \mathrm{~m} \end{gathered}$	5
D	3	A block with mass of 2 kg that is moving at a speed of 6 m / s collides with a 1 kg block initially at rest. After the collision, the 2 kg block moves at a speed of $2 \mathrm{~m} / \mathrm{s}$ along the same direction. What is the speed of the 1 kg block?	m/s	$\begin{gathered} \text { Momentum conservation } \\ (2 \mathrm{~kg})(6 \mathrm{~m} / \mathrm{s})=(2 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})+(1 \mathrm{~kg})^{*} \mathrm{v} \\ \mathrm{v}=8 \mathrm{~m} / \mathrm{s} \end{gathered}$	8
D	4	An object with mass 10 kg is moving at a speed of $2 \mathrm{~m} / \mathrm{s}$. A constant force F is suddenly applied to accelerate it to a final speed of $4 \mathrm{~m} / \mathrm{s}$ over a distance of 3 m . What is the magnitude of F ?	N	Work: $\mathrm{W}=\mathrm{F} *$ distance $=\mathrm{F} * 3 \mathrm{~m}$ Change in Kinetic Energy: $\begin{gathered} \mathrm{K}=0.5^{*} 10 \mathrm{~kg}^{*}(4 \mathrm{~m} / \mathrm{s})^{2}-0.5^{*} 10 \mathrm{~kg}^{*}(2 \mathrm{~m} / \mathrm{s})^{2} \\ \mathrm{~W}=\mathrm{K} \rightarrow \mathrm{~F}=20 \mathrm{~N} \end{gathered}$	20
S	1	A 200 lb astronaut goes to a planet whose mass is 3 times that of the earth, and whose radius is twice that of earth. What is his weight on that planet?	lb	$\begin{aligned} & \mathrm{F}(\text { earth })=\mathrm{GMm} / \mathrm{r}^{2}=200 \mathrm{lb} \\ & \mathrm{~F}(\text { planet })=\mathrm{G}(3 \mathrm{M}) \mathrm{m} /(2 \mathrm{r})^{2}=3 / 4\left(\mathrm{GMm} / \mathrm{r}^{2}\right) \\ & =(3 / 4) \mathrm{F}(\text { earth }) \end{aligned}$	150
S	2	A block with mass 6 kg is released from rest from the top of a slope with a coefficient of kinetic friction 0.1. The slope is tilted at an angle of 60° from the horizon. What is the friction force acting on the block while it is rolling down the surface? (Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$ for the free-fall acceleration.)	N	$\begin{aligned} & \text { Normal force } \mathrm{N}=(6 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) \\ & \cos \left(60^{\circ}\right)=30 \mathrm{~N} \\ & \quad \text { Friction } \mathrm{f}=(0.1)(30 \mathrm{~N})=3 \mathrm{~N} \end{aligned}$	3
S	3	An object of mass 2 kg is at rest on a frictionless table while attached to a wall via a massless spring. The spring has a spring constant of $2 \mathrm{~N} / \mathrm{m}^{2}$. The object is then pushed towards the wall by a distance of 1 m and then released. What will be the maximum speed of the object?	m/s	$\begin{aligned} & \text { Potential energy is converted to kinetic } \\ & \quad \text { energy: }(1 / 2) \mathrm{k} \mathrm{x}^{2}=(1 / 2) \mathrm{m}^{2} \\ & \rightarrow \mathrm{v}=1 \mathrm{~m} / \mathrm{s} \end{aligned}$	1
S	4	Two resistors, 4 ohms each, are connected in parallel with each other across a 4 Volt battery. What is the total	W	$\begin{gathered} 1 / \mathrm{R}_{\mathrm{tot}}=1 / \mathrm{R}+1 / \mathrm{R}=1 / 2 \\ \mathrm{I}=\mathrm{V} / \mathrm{R}_{\mathrm{tot}}=4 \mathrm{~V} / 2 \mathrm{ohms}=2 \mathrm{~A} \end{gathered}$	8

Stu	Num	Question	Unit	Solution	Answer
		power dissipation by the two resistors?		$\mathrm{P}=\mathrm{V} \mathrm{I}=(4 \mathrm{~V})(2 \mathrm{~A})=8 \mathrm{~W}$	

