Stu	Num	Question	Unit	Solution	Answer
Т	1	A car accelerates from zero to 30 m/s in 10 seconds. Its acceleration is	m/s ²	$a = v/t = (30 m/s)/(10 s) = 3 m/s^{2}$	3
A	1	There is a 50 kg block on a frictionless, horizontal surface. A man pushes it with a force of 300 N. What is the acceleration of the block?	m/s ²	F=ma→a =F/m=(300 N)/(50 kg)	6
A	2	A man stands on a bathroom scale in an elevator, which reads 80 kg when the elevator is stationary. What would the reading be while the elevator is accelerating upward at 6 m/s ² ? (Use g=10 m/s ² for the free-fall acceleration.)	kg	Total acceleration =a=g+ 6 m/s ² =16 m/s ² 80 kg*(a/g)=128 kg	128
A	3	A river 200 m wide flows with a current of 2.0 km/h. A woman rows her kayak across the river. Relative to the water, the kayak moves at 4.0 km/h in the direction perpendicular to the river current. How far downstream does the river carry the kayak while being crossed?	m	Time to cross the river: (0.2 km)/(4.0 km/h)=0.05 h 2000 m/h*0.05 h=100 m	100
A	4	A car of mass 1800 kg is parked on a hill inclined at angle 30 degrees from the horizontal. What is the force of static friction on the car? (Use $g=10 \text{ m/s}^2$ for the free-fall acceleration.)	N	Friction force cancels gravity component along plane, mg sin(theta) = 1800 * 10 * 0.5 = 9000	9000
В	1	A meter stick has a mass of 100 g. A small 200 g mass is attached at the 80 cm mark. At which mark is the center of mass?	cm	(100 g* 50 cm+200 g * 80 cm)/(100g +200 g) = 70 cm	70
В	2	A block with mass of 1 kg moving at a speed of 6 m/s collides and sticks to a 2 kg block that is initially at rest. What is the speed of the two blocks after the collision?	m/s	$m_{1}*v_{1} = (m_{1}+m_{2})*v$ 1 kg * 6 m/s =(1 kg +2 kg)*v v=2 m/s	2

Stu	Num	Question	Unit	Solution	Answer
В	3	A ball is dropped from a height of 1.8 m onto a hard surface. What is the speed of the ball when it hits the surface? (Use $g=10 \text{ m/s}^2$ for the free-fall acceleration.)	m/s	Potential energy is converted to kinetic energy: mgh=(1/2) m v ² → v ² =g*h*2=10*1.8*2=36	6
В	4	Two blocks, having masses 6 kg and 4 kg, respectively, hang vertically and are connected by a massless string that passes over a massless and frictionless pulley. When the blocks are released, what is the magnitude of the acceleration of the 4 kg block? (Use $g=10 \text{ m/s}^2$ for the free-fall acceleration, and neglect air resistance.)	m/s ²	F=(6 kg+4 kg)*a, F=(6 kg-4 kg)*10 m/s ² → a =2 m/s ²	2
С	1	If 200 g of water at 100 °C is mixed with 50 g of water at 50 °C, calculate the equilibrium temperature of the mixture.	°C	Heat flow = mc Δ T. Total inward flow=0 50g*c*(T-50°C) + 200g*c*(T-100°C)=0 \rightarrow T=90°C	90
С	2	A planet has the same density as Earth and 9 times the Earth's radius. What is the acceleration of gravity on the planet? (Use $g=10 \text{ m/s}^2$ for the free-fall acceleration.)	m/s ²	$g = G M/R^{2}$ $g_{2}/g_{1} = (M_{2}/M_{1})* (R_{1}/R_{2})^{2}$ $M i = (4 \text{ pi}/3) \text{ rho} (R i)^{2} R i$	90
С	3	A solid metallic object, if dropped into a bath of mercury, becomes 60 % submerged. What is the density of the metal? The density of the mercury bath is 13.6 g/cm ³	g/cm ³	$13.6 \text{ g/cm}^3 \text{ times } 0.6=8.16 \text{ g/cm}^3$	8.16
С	4	A ball is thrown at a vertical wall 30 meters away, with a velocity 30 m/s at an angle of 45°. At what height above the starting point will it strike the wall? (Use g=10 m/s ² for the free-fall acceleration.)	m	$v_x = 30 \text{ m/s} * \cos 45 = 15 \text{ sqrt}[2]$ $\rightarrow t = x/v_x = \text{sqrt}[2] \text{ s}$ $h = v_y * t - gt^2/2 = 30 - 10 = 20$	20
D	1	A vehicle traveling at 36 m/s slows at a constant rate of 4 m/s ² until it stops. How much time elapses to stop?	S	$36 \text{ m/s-}(4 \text{ m/s}^2) \text{ t} = 0 \rightarrow \text{t} = 9 \text{ s}$	9

Stu 1	Num	Question	Unit	Solution	Answer
D	2	A ball is thrown upward from the ground with an initial	m	$10 \text{ m/s-}(10 \text{ m/s}^2)t = 0 \rightarrow t = 1 \text{ s}$	5
		speed of 10 m/s. What is the maximum height it reaches?		$h = (10 \text{ m/s})(1 \text{ s}) - 0.5(10 \text{ m/s}^2)(1 \text{ s})^2$	
		(Use $g=10 \text{ m/s}^2$ for the free-fall acceleration, and neglect		h = 5 m	
		air resistance.)			
D	3	A block with mass of 2 kg that is moving at a speed of 6	m/s	Momentum conservation	8
		m/s collides with a 1 kg block initially at rest. After the		(2 kg)(6 m/s) = (2 kg)(2 m/s) + (1 kg)*v	
		collision, the 2 kg block moves at a speed of 2 m/s along		v=8 m/s	
	4	the same direction. What is the speed of the 1 kg block?	<u> </u>		•
D	4	An object with mass 10 kg is moving at a speed of 2 m/s.	N	Work: W=F*distance=F*3m	20
		A constant force F is suddenly applied to accelerate it to a		Change in Kinetic Energy:	
		final speed of 4 m/s over a distance of 3 m. What is the		$K=0.5*10kg*(4m/s)^2-0.5*10kg*(2m/s)^2$	
		magnitude of F?		$W=K \rightarrow F=20 N$	
S	1	A 200 lb astronaut goes to a planet whose mass is 3 times	lb	$F(earth) = GMm/r^2 = 200 lb$	150
		that of the earth, and whose radius is twice that of earth.		$F(planet) = G(3M)m/(2r)^2 = \frac{3}{4}(GMm/r^2)$	
	_	What is his weight on that planet?		= (3/4) F(earth)	
S	2	A block with mass 6 kg is released from rest from the top	Ν	Normal force N = $(6 \text{ kg})(10 \text{ m/s}^2)$	3
		of a slope with a coefficient of kinetic friction 0.1. The		$\cos(60^{\circ}) = 30 \text{ N}$	
		slope is tilted at an angle of 60° from the horizon. What is		Friction $f = (0.1)(30 \text{ N}) = 3 \text{ N}$	
		the friction force acting on the block while it is rolling			
		down the surface? (Use $g=10 \text{ m/s}^2$ for the free-fall			
C	2	acceleration.)	/		1
8	3	An object of mass 2 kg is at rest on a frictionless table	m/s	Potential energy is converted to kinetic $(1/2)$	1
		while attached to a wall via a massless spring. The spring has a surface source of 2 N/m^2 . The chiest is then much a		energy: $(1/2)K X = (1/2) m V^2$	
		has a spring constant of 2 N/m. The object is then pushed		\rightarrow V – 1 m/s	
		towards the wall by a distance of 1 m and then released.			
		what will be the maximum speed of the object?			
S	Δ	Two resistors 4 ohms each are connected in parallel	W	$1/R_{\perp} = 1/R + 1/R = 1/2$	8
5	т	with each other across a 4 Volt battery. What is the total	**	$I = V/R_{tot} = 4 V/2$ ohms=2 A	0

Stu	Num	Question	Unit	Solution	Answer
		power dissipation by the two resistors?		P = V I = (4 V)(2 A) = 8 W	