University of Alabama Department of Physics & Astronomy Graduate Qualifying Examination Classical Mechanics

8 January 2018

General Instructions

- No reference materials are allowed.
- Do all your work in the corresponding answer booklet (no scratch paper is allowed).
- On the cover of each answer booklet put only your *assigned number* and the subject.
- Turn in the questions for each part with the answer booklet.
- 150 minutes are alloted for this part.
- No electronic devices are allowed. In particular, handheld computers, PDAs, and cell phones are explicitly prohibited.
- Answer 5 out of the 6 problems and clearly indicate the problems you wish to be graded.

characteristic time.

- 1. An object with mass m falling vertically under the influence of gravity through a viscous medium is subject to a resistive force that is proportional to the square of its speed, $F_R = cv^2$, where c is a constant. When dropped from rest, the speed of the object is described by the equation $v(t) = v_t \tanh(t/\tau)$, where v_t is the terminal speed and τ is the
 - a. Find an expression for the characteristic time in terms of only the mass, m, the acceleration due to gravity, g, and the proportionality constant, c.
 - b. Verify that your equation is dimensionally correct.
- 2. A one-dimensional system of mass m is subject to a linear restoring force with force constant k and a frictional force proportional to velocity; denote the proportionality constant by b.
 - a. If the system is initially at rest and displaced distance d from equilibrium, find the condition that must be satisfied so that the system does not oscillate when released.
 - b. Suppose that the system is now subjected to a harmonic driving force: $F=F_0\cos\omega t$. Find the amplitude of the velocity. Hint: The solution will have the form $x=A\cos(\omega t+\delta)$
 - c. Find the driving frequency ω at which the velocity amplitude is maximum.
- 3. A hoop of radius *R* and uniform density is rolling without slipping on a horizontal surface while its center of mass is undergoing constant acceleration *a* towards the right (see the sketch below). Consider the instant at which the speed of the hoop as measured by a stationary observer is *v*.
 - a. As measured by an observer in whose reference frame the center of mass of the hoop is at rest, find the acceleration of a point on the hoop as a function of θ , v, a, and R and the unit vectors \hat{x} and \hat{y} .
 - b. As measured by a stationary observer, find the point on the hoop that has the greatest acceleration and give the magnitude and direction of the acceleration relative to the horizontal.

4. The *effective* potential governing the radial motion of a satellite of mass *m* moving in the neighborhood of a black hole is

$$V_{eff} = \frac{1}{2}mc^{2} \left[-\frac{R}{r} + \frac{\ell^{2}}{r^{2}} - \frac{R\ell^{2}}{r^{3}} \right]$$

In the above expression *R* is the Schwarzschild radius and $\ell = \frac{L}{mc}$ where *L* is the satellite's angular momentum.

- a. Show that for a given $\ell > \sqrt{3}R$ there are possible circular orbits and find their radii in terms of ℓ and R.
- b. Of the orbits found in the previous part, show that only one is stable.
- c. Show that the satellite cannot have a stable circular orbit with radius less than 3R.
- 5. A speed governor on an old-fashioned steam engine consists of two massive balls that are connected to a rotating rod by light rods. Derive an expression for the angle that the rods make with the vertical as a function of angular velocity ω . Denote the distance from the center of each mass to the opposite end of the connecting rod by L, and denote the mass of each ball by m.

- 6. Consider two identical masses m resting on a frictionless surface and connected by three identical light springs with spring constant k as shown below. Define x_a and x_b as the displacements of the masses from their respective equilibrium positions.
 - a) Find the Lagrangian of the system in terms of the variables $u = x_a + x_b$ and $v = x_a x_b$.
 - b) Find the corresponding equation of motion and the resulting frequencies of oscillations.

University of Alabama Department of Physics & Astronomy Graduate Qualifying Examination Electricity and Magnetism

9 January 2018

General Instructions

- No reference materials are allowed.
- Do all your work in the corresponding answer booklet (no scratch paper is allowed).
- On the cover of each answer booklet put only your *assigned number* and the subject.
- Turn in the questions for each part with the answer booklet.
- 150 minutes are alloted for this part.
- No electronic devices are allowed. In particular, handheld computers, PDAs, and cell phones are explicitly prohibited.
- Answer 5 out of the 6 problems and clearly indicate the problems you wish to be graded.

1: Point dipole

A point dipole, $\mathbf{p} = p_0 \hat{\mathbf{z}}$, is located at the center of a linear, isotropic, homogeneous sphere with radius R and permittivity $\varepsilon = \kappa \varepsilon_0$. Find the electric potential outside the sphere.

First few Legendre Polynomials

Associated Legendre Polynomials

$$P_{
m n}^m(x) = (-1)^m (1-x^2)^{m/2} rac{d^m}{dx^m} \left(P_{
m n}(x)
ight)$$

2: Shell with fixed charge density

The charge density of a hollow spherical shell of radius R has the form $\sigma(\theta) = \sigma_0 \sin^2 \theta$.

- (a) Find the potential inside the sphere.
- (b) Find the potential outside the sphere.

3: Relativistic Cyclotron

A relativistic electron (rest mass m_0 and charge -e) moving in the xy-plane with speed v is subjected to a magnetic field with magnitude B in the z direction. Since the magnetic field does no work, the electron travels in a circular orbit with angular frequency ω_c and radius r_c .

- (a) Find the angular frequency in terms of $\gamma = 1/\sqrt{1-v^2/c^2}$, m_0 , e and B.
- (b) Find the radius of the orbit in terms of γ , v, m_0 , e and B.

4: Cylinders of Current

For each of the geometries shown in figures (i) and (ii) below find the magnetic field (\vec{B}) everywhere in space and then sketch the plot of $|\mathbf{B}|$ as a function of the distance from the central axis. Assume that the current density \vec{J} is uniform within the shell. Express your answer in terms of the total current I.

5: Concentric Spherical Shells

Three concentric spherical metallic shells have radii c>b>a. They are initially charged with q_c , q_b and q_a , respectively. Finally, the inner shell is grounded. Find the resulting change in potential of the outermost shell.

6: Reflection and Transmission

A plane-polarized EM wave with electric field $\vec{E_I} = \hat{x}E_Ie^{i(k_1z-\omega t)}$ is traveling in a transparent, nonmagnetic medium with index of refraction n_1 . It is normally incident on an interface at z=0 with a transparent, nonmagnetic medium with index of refraction n_2 . At the interface, the reflected and transmitted electric fields are $\vec{E_R} = -\hat{x}E_Re^{i(-k_1z-\omega t)}$ and $\vec{E_T} = \hat{x}E_Te^{i(k_2z-\omega t)}$, respectively with $k_1 = n_1\frac{\omega}{c}$ and $k_2 = n_2\frac{\omega}{c}$.

- (a) Find the transmission coefficient, $t_{12} = \frac{E_T}{E_I}$, in terms of the indices of refraction.
- (b) Find the reflection coefficient, $r_{12} = \frac{E_R}{E_I}$, in terms of the indices of refraction.

University of Alabama Department of Physics & Astronomy Graduate Qualifying Examination Quantum Mechanics

21 August 2018

General Instructions

- 1. Sign the role sheet; the number beside your name will be used as your identification.
- 2. Answer booklets are numbered, and the graders will not be given the names.
- 3. DO NOT put your name on any of the materials.
- 4. Seats are assigned, so take the seat number indicated on your answer booklet.
- 5. Answer 5 out of 6 of the problems.
- 6. Clearly write on the inside cover of the answer booklet the problems you want to be graded.
- 7. 150 minutes are allotted for this exam.
- No reference materials are allowed.
- No scratch paper is allowed.
- Do all your work in the corresponding answer booklet.
- On the cover of each answer booklet write only your assigned identification number.
- Turn in the question sheets and all answer booklets at the end of the exam.
- No electronic devices are allowed in your possession, including calculators, computers, and cell phones.
- If you inadvertently brought your cell phone, please give it to the proctor to keep until you finish the exam.

- 1. Say that a hydrogen atom has orbital angular momentum quantum number $\ell=1$. To obtain the total angular momentum \vec{J}^{TOT} of the atom one should also include the spins $\vec{S}^{(1)}$ and $\vec{S}^{(2)}$ of the electron and the proton.
 - (a) (10 points) What then are all the possible eigenvalues for J_z^{TOT} , and with what multiplicities do they occur?
 - (b) (10 points) What are all the possible eigenvalues for $(J^{TOT})^2$, and with what multiplicities do they occur?

2. Recall that the energy eigenfunctions and eigenvalues for one particle in the harmonic oscillator potential $V(x) = \frac{1}{2}m\omega^2x^2$ are

$$\phi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}} x\right) e^{-\frac{m\omega}{2\hbar} x^2} , \qquad E_n = \left(n + \frac{1}{2}\right) \hbar\omega$$

where H_n are the Hermite polynomials, the first two given $H_0(\xi) = 1$ and $H_1(\xi) = 2\xi$.

- (a) (5 points) Give an explicit expression for the ground state wavefunction $\psi(x_1, x_2)$ of two identical bosons in the harmonic oscillator potential at a time t = 0 and at a later time t = t'.
- (b) (5 points) Repeat for two identical fermions, assuming they are in identical spin states.
- (c) (5 points) What is the ground state energy of *three* identical bosons trapped in a harmonic oscillator potential?
- (d) (5 points) Repeat for three identical spin $-\frac{1}{2}$ particles trapped in a harmonic oscillator potential.

3. Suppose that in an experiment, there are two orthonormal quantum states A and B, which are represented respectively by

$$|\psi_A\rangle = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\2 \end{pmatrix}, \quad |\psi_B\rangle = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1 \end{pmatrix}.$$

In this system, the normalized energy eigenstates are given by

$$|\psi_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |\psi_2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix},$$

and the corresponding eigenvalues are E_1 and $E_2 = E_1 + E_0$ with $E_0 > 0$, respectively.

- (a) (7 points) If a wave function at time t=0 is detected as $|\psi(0)\rangle = |\psi_A\rangle$, express the wave function $|\psi(t)\rangle$ at a time t>0 in terms of $|\psi_1\rangle$ and $|\psi_2\rangle$.
- (b) (7 points) Find a probability to detect the state as $|\psi_B\rangle$ at a time t>0, when a wave function at time t=0 is detected as $|\psi_A\rangle$.
- (c) (6 points) What is the maximum probability to detect the state as $|\psi_B\rangle$, if a wave function at time t=0 is detected as $|\psi_A\rangle$?

4. The electron of a hydrogen atom is in an energy eigenstate described by the wave function

$$\psi(\vec{r}) = A \left(\frac{r}{a_0}\right)^2 e^{-\frac{r}{3a_0}} \cos \theta \sin \theta \cos \phi$$

where a_0 is the Bohr radius and A is a constant.

- (a) (7 points) If the radial position of the electron were measured, what would be the most probable result?
- (b) (7 points) If the magnitude of the orbital angular momentum were measured, what would be the outcome? Explain.
- (c) (6 points) What would be the possible outcome(s) of measuring the z-component of the orbital angular momentum? Explain.

Given:

$$\hat{H} = -\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right) \right] - \frac{e^2}{4\pi \epsilon_0 r}$$

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right) \right] \qquad \hat{L}_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}$$

$$\int_0^\infty dx x^n e^{-x} = n!$$

5. We consider the so-called asymmetric harmonic oscillator in two dimensions defined by the following Hamiltonian,

$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{1}{2} m \left(\omega_x^2 x^2 + \omega_y^2 y^2 \right),$$

where ω_x and ω_y are two different frequencies $(0 < \omega_x < \omega_y)$.

- (a) (7 points) By expressing the energy eigenfunction of the system as $\psi(x,y)=u(x)v(y)$, decompose the time-independent Schrödinger equation into two independent parts.
- (b) (7 points) Give the energy of the ground state.
- (c) (6 points) Give the energy of the first excited state.

6. A particle of mass m moves in one dimension under the influence of the potential:

$$V(x) = \begin{cases} \infty & x < -a \\ 0 & -a < x < -b \\ V_0 & -b < x < b \\ 0 & b < x < a \\ \infty & x > a \end{cases}$$

- (a) (12 points) Suppose $|V_0| \ll \frac{\hbar^2}{mab}$. Use first–order perturbation theory to find an expression for the ground state energy.
- (b) (8 points) Suppose instead that V_0 is large and positive such that $V_0 \gg E_0$, where E_0 denotes the ground state energy for this case. Sketch the wave functions for the lowest two energy states. Estimate E_0 .

University of Alabama Department of Physics & Astronomy Graduate Qualifying Examination Thermal Physics

22 August 2018

General Instructions

Answer 2 out of 3 of the problems. Clearly indicate on the inside cover of the answer booklet the problems you wish to be graded.

- No reference materials are allowed.
- Do all your work in the corresponding answer booklet.
- No scratch paper is allowed.
- On the cover of each answer booklet put only your assigned number and the part number/subject.
- Turn in the questions for each part with the answer booklet.
- 90 minutes are alloted for this part.
- No electronic devices are allowed. In particular, handheld computers, PDAs, and cell phones are explicitly prohibited.

1. Ideal Bose Gas.

Consider a collection of N identical, non-interacting, spinless Bose particles. Each particle has only two possible energy eigenstates, ψ_0 with energy $\varepsilon = 0$ and ψ_I with energy $\varepsilon = \Delta$. The number of particles n_I in the eigenstate ψ_I can be used as the index for the many particle states of the system with $|n_0, n_1\rangle = |N - n_1, n_1\rangle$ and $E_{n_1} = n_1\varepsilon$ with possible values of $n_1 = 0,1,2,...,N$ giving N+I many particle states.

- a) Find a close-form expression for the partition function Z(N, T) using the Canonical Ensemble. (20 pts)
- b) Find the probability P(n) that n particles will be found in the eigenstate ψ_1 . (15 pts)
- c) Find the partition function $Z_d(N, T)$ that would apply if the N particles were distinguishable but still had the same two single-particle eigenstates as above. (15 pts)

2. Neutral Atom Trap.

A gas of N indistinguishable classical non-interacting atoms is held in a neutral atom trap by a potential of the form $V(r) = ar = a\sqrt{x^2 + y^2 + z^2}$. The gas is in thermal equlibrium at temperature T.

- a) Find the single particle partition function $Z_1 = \frac{1}{h^3} \int e^{-\beta H(r,p)} d^3r d^3p$ for a trapped atom with $H(r,p) = \frac{p_x^2 + p_y^2 + p_z^2}{2m} + \alpha r$. Express your answer in the form $Z_1 = AT^\alpha a^{-\eta}$, that is find the prefactor A and the exponents α and η . HINT: $d^3r = r^2 sin\theta dr d\theta d\phi$ in spherical coordinates. (20 pts)
- b) Find the entropy of the gas in terms of N, k, and Z_1 . (15 pts)
- c) The gas can be cooled if the potential is lowered reversibly by slowly decreasing a while no heat is allowed to be exchanged with the surroundings, dQ = 0. Under these conditions, find T as a function of a and the initial values T_0 and a_0 . (15 pts)

Simplified potential function for the neutral atom trap.

3. Heat Supplied to a Gas.

An ideal diatomic gas (PV = NkT) with heat capacity at constant volume, $C_v = \frac{5}{2}Nk$, is taken from point a to point c in the pressure-volume diagram along three possible paths as shown in the figure below. For each of the following questions assume that $\left(\frac{\partial U}{\partial V}\right)_T = 0$.

- a) Find the heat capacity at constant pressure C_p in terms of N and k. (20 pts)
- b) Compute the heat supplied to the gas along each of the three paths: abc, adc, and ac in terms of N, k, and T_1 . (15 pts)
- c) Find the "heat capacity" along path ac: $C_{ac} = \frac{dQ}{dT}\Big|_{ac}$. (15 pts)

Pressure-volume diagram showing three possible paths from a to c.