
Classical Mechanics

1. Consider a wheel of radius R which is orientated vertically and is spinning about its center,
such that the speed of a particle at the outer edge of the wheel is v0. Imagine that particles of
mud are being thrown up by the spinning wheel, and that they are launched from the wheel
edge with an initial speed of v0, at a tangent to the wheel, as shown in the diagram below.
Assume that a particle can be launched at any angle as the wheel rotates.

(a) Find the launch angle θmax relative to the horizontal axis which causes the thrown
particle to reach the greatest height (relative to the bottom of the wheel, y = 0 in the
diagram).

(b) Show that the greatest height (relative to the bottom of the wheel) that a launched
particle can reach is given by:

R+
v20
2g

+
gR2

2v20

(c) What condition relating the radius R to the speed v0 is required for this solution to be
valid?

2. A block of mass m, attached to a spring of spring constant k, is moving in one dimension on
a horizontal surface. The coefficient friction between the block and the surface is µ = 1/5,
taken to be the same for static and kinetic friction. The mass is at x = 0 in equilibrium (
spring unstretched).

a) Suppose the spring is extended to x = A (say, to the right) and the mass is released (from
rest). Show that the block does not move if A is less than some critical distance xm, and find
xm.
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b) Suppose A = 8xm when the mass is released.

Find i) the position of the mass x, (ii) energy lost due to friction, and (iii) the time taken
(period) at the end of one cycle (where mass goes to the left and then comes back again to
the right).

3. Consider one dimensional motion of a particle with mass m. This particle is moving in the
direction of the positive x-axis under a velocity-dependent drag force F = −vp

A , where p > 0
and A > 0 are constants with the appropriate units. At t = 0, the particle is at the origin
and has a velocity v = v0 > 0.

(a) Using Newton’s 2nd Law, write the differential equation of motion for the particle.

(b) Find a condition on p for the particle to stop within a finite time (time t <∞, when the
particle stops).

(c) Find a condition on p for the particle to stop within a finite distance (the position of the
particle x <∞, when it stops).

4. Consider a simple pendulum (length `, mass m) whose support point is moving vertically
upward with a constant acceleration a.

(a) Construct the Lagrangian for this system using the oscillation angle θ (relative to the
vertical axis) as the generalized coordinate.

(b) Use Lagrange’s equation to find the equation of motion for θ, and show that the period
of small oscillations for this rising pendulum is given by 2π

√
`/(g + a). Comment briefly

on why this should be the expected result?

5. The center of a long frictionless rod is pivoted at the origin, and the rod is forced to rotate
in a horizontal plane with constant angular velocity ω.

(a) Write down the Lagrangian for a bead of mass m threaded on the rod, using r as your
generalized coordinate, where r, φ are the polar coordinates of the bead. Note that φ is not
an independent variable since it is fixed by the rotation of the rod to be φ = ωt.

(b) Solve Lagrange’s equation for r(t) and express a general solution with two constants of
integration.

(c) What happens if the bead is initially at rest at the origin?

(d) If the bead is released from any point r0 > 0, show that r(t) eventually grows exponentially.

6. A particle of mass m is moving under a central force f(r).

Prove that a) energy and b) angular momentum vector (L) are constants of the motion
(independent of time).

c) Now consider an orbit in the x-y plane, so that the angular momentum (magnitude L) is
in the z direction. The orbit is described by r = aebθ, in polar coordinates. Starting from the
expression for the angular momentum Lz in polar coordinates, find the angle as a function of
time, θ(t), for this orbit, in terms of the constants a, b,m & L, given that θ = 0 at t = 0.
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Electromagnetism

1: Radiation. The retarded potentials of electromagnetism in the Lorentz gauge c−1∂tφ+
∇ ·A = 0 read as

A(r, t) =
1

c

∫
d3r′

j(r′, t− |r− r′|/c)
|r− r′|

, φ(r, t) =

∫
d3r′

ρ(r′, t− |r− r′|/c)
|r− r′|

. (1)

The charge and current densities ρ and j are related by the continuity equation ∂tρ+∇ · j = 0.
The aim of this problem is to find the leading contribution to the radiation fields in the near field
regime. The source is located close to the origin, with typical size d. The time dependence of the
charge and current densities is given by ρ(r, t) = ρ0(r) exp(−iωt), and j(r, t) = j0(r) exp(−iωt).
In the following, you may calculate with complex fields ρ, j, A, E and B. Note that the physical
fields corresponds to the real or imaginary parts.

(a) Show that the leading contribution to the vector potential in the limit d � r can be
written as A(r, t) = −ikp(t)eikr/r, where k = ω/c and p(t) =

∫
d3r rρ(r, t). HINT: Use

the relation
∫
d3r ji =

∫
d3r ∇ri · j and the continuity equation to introduce the dipole

moment. [10pts]

(b) Find the magnetic and electric fields in the near field approximation r � λ, where λ is
the wavelength. You may use the result for A stated in (a) as a starting point. HINT:
You can find E from B with the help of the Faraday-Maxwell equation in the absence of
currents. [10pts]
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2: Rogowksi coil. 
A Rogowski coil is constructed of a soft iron torus (with µ� 1) of mean radius rc, with circular
cross section of diameter d = b − a � rc. It is wound along its entire diameter with thin wire
with a number of turns per unit length n. A wire with current I(t) = I0 cos(ωt) is fed through
the hole in the center of the torus.

(a) Using the quasistatic approximation, find H(t) inside the torus. [8pts]

(b) Find the induced EMF, V (t), across the winding of the torus. [12pts]

rc b

a
I(t)

n turns/unit length

V(t)
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3: Electric and magnetic fields in matter. Consider a metallic charged wire with circular cross 
section of radius a and constant linear charge density λ. This wire is coated by a linear dielectric of 

permittivity ε so that the dielectric material fills the space up to a radius b.

(a) Find the electric field in the regions I. ρ < a, II. a < ρ < b, III. ρ > b, where ρ is the
distance from the central axis. [10pts]

(b) Find (i) the polarization P inside the dielectric and from that (ii) the charge density ρb of
bound charges inside the dielectric and (iii) the surface charges σouter and σinner for both
surfaces of the dielectric. [10pts]
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4: Gauss Law. A thick spherical shell carries charge density

ρ =
k

r2
(a ≤ r ≤ b). (2)

Find the electric field in the three regions: (i) r < a, (ii) a < r < b, (iii) r > b. Plot |E| as a
function of r , for the case b = 2a.
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5: Electromagnetic Waves. Suppose

E(r , θ, φ, t) = A
sin θ

r

[
cos(kr − ωt)− 1

kr
sin(kr − ωt)

]
φ̂, (3)

with ω/k = c. This is, incidently, the simplest possible spherical wave. For notation conve-
nience, let u ≡ (kr − ωt) in your calculations.

(a) Show that E obeys all four Maxwell’s equations, in vacuum, and find the associated mag-
netic field.

(b) Calculate the Poynting vector. Average S over a full cycle to get the intensity vector I.
(Does it point in the expected direction? Does it fall off like r−1, as it should?)

(c) Integrate I · da over a spherical surface to determine the total power radiated. [Answer :
4πA2/3µ0c]
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6: Electrostatics: This problem contains two steps:

(a) Suppose you have a parallel plates capacitor with charge Q with the plates distant d from
each other (see Fig.2(a)). The area of the plates is A and there is vacuum between them,
whose permittivity constant is ε0. Calculate the energy store in the capacitor and then
calculate the work done by the electrostatic forces if you approximate the plates by an
amount δ.

(b) Now, supposed that you partially filled the capacitor with a liquid linear dielectric (with
electric susceptibility χe) by pouring it until it reaches the desired height x , as show in
Fig.2(b). Calculate the energy stored by this new capacitor.

(c) Finally, you pour a little bit more dielectric in the capacitor until it reaches the height
x + δ. As you do this, what is now the work done by the electrostatic forces in terms of
that work found for the empty capacitor?
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Quantum Mechanics

1. A non-relativistic particle of mass m moves in three dimensions under the influence of
a central attractive force of constant magnitude κ. The corresponding potential energy
is

V (~r) = κr

Use the variational principle to obtain an estimate of the ground state energy in terms
of κ, m, and any physical and mathematical constants.

The time–independent Schrodinger equation in spherical coordinates is

− h̄2

2m

[
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

]
+ V (~r)ψ = Eψ

Take as given

∫ ∞
0

dxxne−x = n!
∫ ∞

0
x2ne−x

2

=
(2n− 1)!!

√
π

2n+1

∫ ∞
0

x2n+1e−x
2

=
n!

2

where n = 0, 1, 2, 3.... and m!! = m · (m− 2) · (m− 4) · · · 1 for m odd.

2. Consider an unbound particle of mass m with a binary internal degree of freedom
propagating with energy E in one space dimension under the influence of the potential

V (x) =

 V0

(−1 1
1 −1

)
x > 0

0 x < 0

where V0 > 0.

(a) For each region, x < 0 and x > 0, find a complete set of independent energy
eigenfunctions in terms of m, V0, E, and any physical and mathematical constants.
(Boundary conditions can be ignored for this part.)

(b) Suppose that the particle is prepared as a state initially propagating in the +x
direction from −∞ with the internal degree of freedom in the state correspond-

ing to
(

1
0

)
. Find the probability, in terms of m, V0, E, and any physical and

mathematical constants, that the particle is reflected from x = 0 with the internal

degree of freedom in the state corresponding to
(

0
1

)
.
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3. Say the Hamiltonian for a spinning particle is given by

H = E0

(
1 −i
i 1

)
, E0 is real ,

while the spin matrices are

Sx =
h̄

2

(
0 1
1 0

)
Sy =

h̄

2

(
0 −i
i 0

)
Sz =

h̄

2

(
1 0
0 −1

)
(a) Is H hermitean?

(b) Can the energy be measured simultaneously with the spin in either the x, y or
z-direction?

(c) What energy spectrum follows from H?

(d) If Sz is measured to be h̄/2 at time t = 0, what is the likelihood of measuring Sz

to be h̄/2 for t > 0?

(e) If instead, Sy is measured to be h̄/2 at t = 0, what is the likelihood of measuring
Sy to be h̄/2 for t > 0?

4. In a 1-dimensional quantum mechanical system, a particle with mass m is trapped in
a potential well. The eigenfunction of a bound state with energy E = − h̄2

2mL2 is given
by

Ψ(x) =

{
A x e−

x
L (0 ≤ x)

0 (x < 0)

Here, A is a constant, and L > 0 is a length. In solving the following problems, one
may use ∫ ∞

0
dx xne−ax =

n!

an+1

for a real and positive parameters a and the integer n = 1, 2, 3, · · ·.

(a) Fix the normalization constant A to satisfy
∫∞
−∞ dxΨ(x)∗Ψ(x) = 1 (up to a com-

plex phase).

(b) Calculate the expectation value of the position 〈x〉.
(c) Calculate the expectation value of the squared momentum 〈p2〉.
(d) Find the potential of the system V (x) for x ≥ 0.

5. We consider the 1-dimensional harmonic oscillator with the potential

V (x) =
1

2
mω2

cx
2.

We introduce the annihilation operator (a) and the creation operator (a†) defined as

a =

√
h̄

2mωc

(
d

dx
+
mωc

h̄
x

)
, a† =

√
h̄

2mωc

(
− d

dx
+
mωc

h̄
x

)
.
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(a) Verify that [a, a†] = 1 and the Hamiltonian is expressed as H = h̄ωc

(
aa† − 1

2

)
.

(b) Verify [H, a] = −h̄ωca and [H, a†] = +h̄ωca
†.

(c) Derive the ground state eigenfunction u0 from au0 = 0. Use the result to find the
eigenfunction for the first excited state. You need not normalize the eigenfunc-
tions.

(d) Suppose we have an eigenfunction v0 which satisfies a†v0 = 0. Show that this
eigenfunction satisfies Hv0 = −1

2
h̄ωcv0, and find an explicit formula for v0 as a

function of x. You do not need to normalize the wavefunction.

(e) From the mathematical point of view, v0 is a solution to the Schrödinger equation
and we may adopt it as an eigenstate. However, in the view point of physics, we
exclude v0 from our discussion about the harmonic oscillator. Explain the reason.

6. In a 3-dimensional system, a particle of mass m is trapped in an infinite potential well
(box),

V (x, y, z) =

{
0 (0 ≤ x ≤ L, 0 ≤ y ≤ 2L, 0 ≤ z ≤ 3L)
∞ (x, y, z < 0 and L < x, 2L < y, 3L < z)

(a) Write the solution of the time-independent Schrödinger equation in the region
inside the well.

(b) Determine the energy spectrum of the system.
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1: Ideal gas and Otto cycle
The Otto cycle consists of two adiabats and two isochores as illustrated in the figure.

40 CHAPTER 2. THERMODYNAMICS

Figure 2.16: An Otto cycle consists of two adiabats (dark red) and two isochores (green).

The cycle efficiency is once again

η =
W

QAB

= 1− T1

T2

. (2.94)

2.6.6 The Otto and Diesel cycles

The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats and two
isochores, and is depicted in Fig. 2.16. Assuming an ideal gas, along the adiabats we have d(pV γ) = 0. Thus,

p
A

V γ
1 = p

B
V γ

2 , p
D

V γ
1 = p

C
V γ

2 , (2.95)

which says
pB

pA

=
pC

pD

=

(
V1

V2

)γ

. (2.96)

AB: Adiabatic expansion, the power stroke. The heat transfer is Q
AB

= 0, so from the First Law we have W
AB

=
−∆EAB = EA − EB, thus

W
AB

=
pAV1 − pBV2

γ − 1
=

pAV1

γ − 1

[
1−

(
V1

V2

)γ−1
]

. (2.97)

Note that this result can also be obtained from the adiabatic equation of state pV γ = pAV γ
1 :

W
AB

=

V2∫

V1

p dV = p
A
V γ

1

V2∫

V1

dV V −γ =
p

A
V1

γ − 1

[
1−

(
V1

V2

)γ−1
]

. (2.98)

BC: Isochoric cooling (exhaust); dV = 0 hence W
BC

= 0. The heat Q
BC

absorbed is then

QBC = EC − EB =
V2

γ − 1
(pC − pB) . (2.99)

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.

d̄Q = 0

d̄Q = 0

Assume that the working substance is an ideal gas. The ideal gas is characterized by the gas law
pV = νRT , ν = N/NA, where NA is the Avogadro number, and the energy E(N, V, T ) = νε(T ).

(a) Assume that the particle number is constant. The specific heat at constant volume and
the specific heat at constant pressure are defined as

cV =
1

ν

d̄Q

dT

∣∣∣∣
V

, cP =
1

ν

d̄Q

dT

∣∣∣∣
p

(1)

Show that they are related as cp = cV +R [15 pts].

(b) For the ideal gas, cV and cp are temperature-independent. Show that for an adiabatic
transformation (d̄Q = 0) the following relation holds [15 pts]:

pV γ = const., γ =
cp
cV
. (2)

(c) Determine the heat transfer Qij to the system, the work Wij performed by the sys-
tem and the change of the energy of the system ∆Eij = Ej − Ei for each process
ij ∈ {AB,BC,CD,DA} during the Otto-cycle. Let W denote the total work performed
by the system during the cycle. Show that the efficiency η ≡ W/QDA is given as [20 pts]:

η = 1−
(
V1
V2

)γ−1

. (3)

Thermal Physics
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2: Blackbody radiation
Thermodynamics of blackbody radiation is described in terms of a gas of photons confined in
a volume V and in thermal equilibrium at a temperature T . The energy of a photon of wave
vector ~k is equal to ~ck, where k is the magnitude of ~k.

(a) Use the appropriate distribution function to express the average energy per unit volume

U/V as an integral over ~k and show by power counting or otherwise that it is proportional
to T 4. Hint: You do not need to evaluate the integral [17 pts].

(b) The radiant energy flux (energy emitted per unit area per unit time through a hole in the
wall) of a black body is given by J = σT 4 where σ is a constant. Notation: Let RS be
the radius of the sun, RES the earth-sun distance, RE the radius of the earth, and TS the
surface temperature of the sun.

i. Find an expression for the total energy radiated by the sun (treated as a black body)
per unit time in terms of RS and TS [15 pts].

ii. Assuming that the surface of the earth (treated as a black body) radiates as much
energy as it receives from the sun, show that the surface temperature of the earth is
given by TS(RS/2RES)1/2 [18 pts].
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3: Ensemble of pressures
The Ensemble of Pressures: Imagine that you bring a system into contact with a reservoir of
heat and work (or Thermal and volume reservoirs). The wall connecting the system and the
reservoir is diathermal and can also move (consider that τ = kbT ).

(a) Show that the ratio between the probability P (V1, ε1) to find the system in a state with
energy ε1 and volume V1 and the probability P (V2, ε2) to find the system in a state with
energy ε2 and volume V2 is given by [19 pts]:

P (V1, ε1)

P (V2, ε2)
=
exp

[−V1p−ε1
τ

]

exp
[−V2p−ε2

τ

] . (4)

(b) Show that the partition function can be written as z =
∑

v

∑
ε exp

[−V p−ε
τ

]
, where the

summation goes over all volumes and energies [6 pts].

(c) Find expressions for U = < ε > (average internal energy) and < V > (average volume) in
terms of derivatives of the partition function [19 pts].

(d) Find an expression for the compressibility at τ = const, κτ = − 1
V
∂V
∂p

, in terms of derivatives

of the partition function [6 pts].
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