Motivation

- Lack of DM signals as of yet
- "Naturalness" of DM abundance doesn't necessarily mean naturalness of any other DM properties
- Why not DM at Planck scale, where we may expect new physics?

How to get such heavy DM?

- Only gravitationally coupled
 - Consequently, never in equilibrium with SM/dominant plasma \(\rightarrow \) Freeze-out

 - Such PI_DM can produce DM in mass range \(10^3 \text{ GeV} < m_X < M_{GUT} \) if \(\text{TeV} \) is high enough

- Charged Hidden charged PI_DM, totally decoupled from SM (time allowing)

Goal: Determine what is required phenomenologically for such PI_DM to be a viable model
- Calculational Setup

\[J = J_{\text{SM}} + J_{\text{DM}} + J_{\text{EN}} + \frac{1}{2m_p^2} W_{\mu} (T_{\mu}^{\text{SM}} + T_{\mu}^{\text{DM}}) \]

- Some global charge (model dependent) prevents DM-SM sector from coupling directly, forbidding DM decay.
- Non-self-interacting DM (for simplicity).

2-2 amplitude

\[M = -i 8\pi <p_1|T_{\text{SM}}^{\nu}(p_2 \times k)|T_{\mu}^{\text{DM}}|0> \frac{1}{m_p^2 (k_1 + k_2)^2} \]

\[w_1 (k_1 + k_2) \cdot T_{\mu}^{\text{DM}} = 0. \]

\[M = -i \frac{8\pi G}{3} (T_{\mu}^{\text{SM}} T_{\mu}^{\text{DM}} - \frac{1}{2} T_{\mu}^{\text{SM}} T_{\mu}^{\text{DM}}), G \equiv \frac{1}{m_p^2} \]

\[\text{traces} \]
\textbf{Boltzmann Eqns}

\[\frac{\partial \rho_b}{\partial t} = -3H (1+w) \rho_b \frac{\Delta S}{\Delta t} \]
\[\frac{\partial \rho_r}{\partial t} = -4H \rho_r + S + 2\langle \Delta S \rangle \langle \Delta E \rangle \left(n_x^2 - (n_x^S)^2 \right) \]
\[\frac{\partial n_x}{\partial t} = -3H n_x - 2\langle \Delta S \rangle \left(n_x - (n_x^S)^2 \right) \]

- ρ_b - Inflaton energy density
- ρ_r - radiation
- n_x - DM number density
- S - Describes inflaton decay to SM

- Generally $S(t)$, $W(t)$ have complicated time dependence. Assume $S = \Gamma r \rho$, Γ is const.
- Γ_i - Hubble rate at end of inflation.
 - Γ_i must be real.
 - T_i - Fast reheating.
 - $\Gamma_i \gg H_i$.
- Γ_i pert. $\Rightarrow \Gamma_i \ll H_i$.
- Define reheating temperature as $H_i \sim \Gamma_i$ by
 \[T_R = k_B \left(m_p H_i \right)^{1/2} \]
- Thus, in turn, defines
 \[Y = \sqrt{\frac{\Gamma_i}{H_i}} \left(\frac{\delta_{\rho}}{\delta_{\rho_0}} \right)^{1/4} e^{-\frac{3}{4} N_R} \frac{(1+\omega)}{} \]

$Y \in (0, 1)$; $Y \ll 1$ perfectly instant. RH.
- For freeze-in scenario to work, need $Y \gg 1$

\[\sqrt{3 \gamma} = \left(\frac{45}{4 \pi^3} \right)^{1/4} \sim 0.25 \]
- $\gamma_{RH} = 3 \gamma_{SM} \sim 0.75 \text{ at RH.}$
- $N_{RH} \sim$ No. of e-folds

ρ_{RH} = energy density at RH.

- $\Gamma_i \rho_0$ =UED (Inflaton)

\[\rho_{RH} = \frac{16}{45} \left(\frac{m_p}{\omega} \right)^{3/2} \]

This resembles $\rho_{RH} \approx m_p^2$ approximately large.
For in Planck, assuming it dominates, \(\frac{p}{p} \sim a^{-3(1+w)} \). Thus holds until RH stops & normal plasma dominates.

\[H = H_0 \left\{ \frac{(a/a_0)^{-3(1+w)/2}}{a/a_0} \right\} \left(\frac{a}{a_{\text{crit}}} \right)^2 \left(a_{\text{crit}} \right) \]

The 2nd eqn., when solved, yields \(T(a) \),

\[T(a) = K_1 (Y_{\text{H}_0, H_0})^{1/2} \left(\frac{a - \frac{3(1+w)}{2}}{a - 4} \right)^{1/4} \]

needed for Abundance calculations.

Post-RH, \(T(a) = T_{\text{eq}} \frac{c_{\text{eqn}}}{a} \)

3rd eqn requires \(N_x^{eq} \) = \(\frac{g_1}{2\pi^2} \) \(M_x^2 T K_2 \left(\frac{m}{T} \right) \)

As \(T \) bound on \(H_0 \), just \(H_0 \ll H_{\text{crit}} \) is enough, and yields

\[H_t < 6.6 \times 10^{-6} \quad M_p \left(\frac{r}{0.1} \right)^{1/2} \]

for the DDIM scenario.

Abundance Calc.

Rewrite: Define dimensionless abundance \(X = N_x a^3 / T^3 \)

\[\frac{dX}{da} = \frac{a^2}{T^3 H(a)} \quad <c v> (N_x^{eq})^2 \]

Direct integration possible (if \(\bar{N}_x \) initial abundance remains)

\[X = \frac{1}{T^3} \int a \quad \frac{a^2}{H(a)} \quad <c v> (N_x^{eq})^2 \]

Yields number density in form of \(M_x, H_0, Y, \& W \).
Resultant abundance is related to present-day abundance:
\[\mathcal{Q} \propto k^2 = \mathcal{Q} \propto \frac{4}{m} \frac{M_x}{m_p} \frac{M_p}{S_\nu} \mathcal{O}, \quad \mathcal{Q} = \frac{1}{8} \frac{\mathcal{T}^2}{S_\nu} \mathcal{P}_c \]

- For definiteness, consider... [Scalar P IDM]

- Generally, \(\langle \sigma v \rangle = N_0 \langle \sigma v \rangle_0 + N_2 \langle \sigma v \rangle_2 + N_i \langle \sigma v \rangle_i \),

\[N_0 = 4, \quad N_2 = 45, \quad N_i = 12 \text{ in SM} \]

As usual
\[\langle \sigma v \rangle = \frac{1}{8 m_x^2 T K_1(m_x/T)^2} \int_0^\infty \frac{d^2 s}{s^2} (s-4m_x^2)^{1/2} \left[1 + K_1 \left(\frac{s}{T} \right) \right] \]

\[\sigma_{TSN} = \frac{1}{16 s (s-4m_x^2)} \int_0^T ds \frac{1}{s} |N|^2 \]

with \(|N|^2 \) depending on P IDM spin.

\[M = \frac{T_{\text{M}}}{\mathcal{M}} \left(T_{\text{N}} T_{\text{M}} - \frac{1}{2} T_{\text{N}} T_{\text{M}} T_{\text{TM}} \right) \]

\[G = \frac{T_{\text{N}}}{T_{\text{M}}} - \text{traces} \]

- Skipping explicit lengthy calculations,

\[\langle \sigma v \rangle_0 = \frac{\pi m_x^2}{8 m_p^4} \left[\frac{5}{5} K_0^2 + \frac{2}{5} + \frac{4}{5} T \frac{K_1}{K_2} + \frac{8}{5} \frac{T^2}{m_x^2} \right] \]

\[\langle \sigma v \rangle_2 = \frac{4 \pi T^2}{m_p^4} \left[\frac{1}{15} \left(\frac{m_x^2}{T^2} \left(\frac{K_2^2}{K_1^2} - 1 \right) + \frac{3m_x^2 K_1}{T} \right) + 3 \right] \]

- Letting \(m_x \gg T \), \(v = 0 \), abundance can be calculated:

\[X_4 = \frac{N_0 m_x^5}{8 \pi^2 m_p^4 T_\nu^3 H_i} \left[\frac{1}{T_1} \int_0^{1/a} \frac{da}{a} \left(\frac{2m_x}{a} \frac{a}{T_1} e^{-\frac{a}{T_1}} + \frac{1}{2} \frac{a}{T_1} e^{-\frac{a}{T_1}} \right) \right] \]

\[\text{am} \gg 1, \text{am} > \text{dark} : \]

\[X_4 = \frac{N_0 m_x^5}{8 \pi^2 m_p^4 T_\nu^3 H_i} \left[\frac{1}{T_1} \int_0^{1/a} \frac{da}{a} \left(\frac{2m_x}{a} \frac{a}{T_1} e^{-\frac{a}{T_1}} + \frac{1}{2} \frac{a}{T_1} e^{-\frac{a}{T_1}} \right) \right] \]

\[g = \left(\frac{32.8}{512} \right)^{1/2} \times 10^{24} T_{\text{max}} = 0.4 \eta \mathcal{T}_\text{max} \]

\[T_{\text{max}} \text{ is max veloc. T (ca) from before} \]
- For $y < 1$, $T_{\text{max}} > t_{\text{max}}$, so second term can be ignored, and we can solve for $H_i(m_i)$:

$$H_i(m_i) = \frac{4m_i^3}{1.2\gamma M_p^4} \left(-\gamma \right)^{-7/2} \frac{M_p^4}{m_i^2}$$

- If the argument of $W_1(x)$ is less than $-\nu$, no real solution exists. This leads to a restriction on model parameters:

$$\gamma^{7/8} M_X > 2.5 \times 10^{-6} M_p$$

- For small M_X, heavy PIDM approx breaks down.

- For large masses, we find a lower bound on RH efficiency γ needed for this production mechanism to work.

$$\Rightarrow \text{Scalar vs. Fermion vs. Vector DM}$$

- $<\sigma v>$ for all 3 cases are very similar, only differing in terms of prefactors mainly on a single power of DM mass M_X.

- So numerical results don't vary greatly.

\[\text{Nonminimally Coupled PIDM}\]

$$L_{\text{ PIDM}} = \frac{1}{2} \left(g_{\phi} \phi^2 + g_X X^2 \right) R, \quad \phi - \text{SM scalar}\]

- Calculating $<\sigma v>$ in the relativistic limit:

$$<\sigma v> \approx \frac{g_{\phi}^2 m_{\phi}^2}{8} \left(1 + 4 g_X \right) \left(1 + 6 g_{\phi} \right)$$

- Effectively $m \rightarrow m \left(1 + 4 g_X \right) \left(1 + 6 g_{\phi} \right)$

- For small couplings, previous results still hold.

- Reduced cosmological constraints.
From numerical results (scalar), M_x
 can span a large range.
 Very sensitive to RH efficiency γ.
 If $\gamma \leq 10^{-3}$ ($N_y > 10$
 new e-fold),
 PIDM freeze-in is impossible.

- Higher PIDM masses are more favorable;
 for large γ, M_x must possible.
- For given bound on r, $N_{\text{max}} = 0.023 \sqrt{r/2} r^{1/4} M_p$
 ≤ 25 for $r \leq 0.07$, $N_{\text{max}} = 0.013 M_p$,
 decreasing for smaller γ.

If R CMB exponents exclude tensor
 modes to $r \approx 10^{-4}$ or less, PIDM
 viability only significantly below
 the natural cutoff scale.

- Charged PIDM

- In light of similar results by Scalar/fermion/tree,
 we can consider Fermionic DM with only
 gravitational self interactions w/ SM. Also
 with a dark U(1) gauge symmetry; gauge
 born γ_0.

\[Z_{\text{dm}} = -\frac{1}{4} V_{\text{dm}} V^{\dagger} + X: \Box X - m_{\text{dm}} X \]

\[D_{\mu} = \partial_{\mu} - ig_{\text{dm}} V_{\text{dm}} \]

$\Rightarrow q_{\text{dm}} \propto \gamma^2 \gamma_0$ defines dark fine-structure
 constant γ_0.

\(\approx 10^{-10} + 10^{-2} M_p \)

Note/reminder:
- used std. reheating
 setup w/ constant T & ω.
 Results could change for more
 general cases.

- Possible SM-DM
 couplings from
 quantum corrections.
 Loops involve gravitons,
 and it turns out
 any contributions from
 these diagrams that
 contribute to leptonic
 mixing go to 0.
For charged PDM, abundance can split into two parts:
1. Around reheating, Dark sector populated by freeze-out, predominantly
2. Subsequent evolution, dependent on whether Dark sector thermalizes. This may affect PDM abundance, depending on x_D.

This calculation is similar to scalar case, just with appropriate changes for fermions, and also accounting for Dark Photon γ_D density x_{γ_D}.

Doing the integrals for $x_x \& x_{\gamma_D}$, we can find for abundances an initial density produced from freeze-out @ around T_{in}:

$$n_{\chi, x} \approx 0.27 \frac{T_{\text{in}}^6}{m_x^3}, \quad n_{\gamma_D, x} \approx 0.65 \frac{T_{\text{in}}^6}{m_{\gamma_D}}$$

Therefore smaller by a factor of $(T_{\text{in}}/m_p)^3$ than would be for an equilibrium dist. at the typical energy scale T_{in}.

Freeze-out gives non-thermal dist ρ produces a Dark sector with momentum dist. $f_x \chi, f_{\gamma_D}(P)$ produced around T_{in}.

But inf. densities are smaller by $(T_{\text{in}}/m_p)^3 \Rightarrow$ Freeze-out produces an underpop. dist.
Dunk Sector won't come to thermal eq. with SM, but might equilibrate with itself.

- Omit detailed analysis. For critical values of \(\alpha_p \) which determines Dunk Sector phase.

\[
\alpha_{\text{crit, med}(a)} \approx 2 \times 10^{-3} \left(\frac{m_x}{100 \text{GeV}} \right)^{2/5} \left(\frac{10^{-4} \text{MeV}}{T_{\text{H}}(a)} \right)^{9/10} \\
\alpha_{\text{crit, med}(b)} \approx 5 \times 10^{-4} \left(\frac{m_x}{100 \text{GeV}} \right)^{1/2} \left(\frac{10^{-4} \text{MeV}}{T_{\text{H}}(b)} \right)^{9/8}
\]

- If \(\alpha_p \gg \alpha_{\text{crit}} \), max (\(\alpha_{\text{crit, med}(a)}, \alpha_{\text{crit, med}(b)} \))

\[\Rightarrow \text{Thermal} \rightarrow \text{Dunk Sector equil.}\]

- Even if \(\alpha_p \ll \alpha_{\text{crit}}, \) no Thermalization.

PIDM self-scattering processes ("Dunk Coulomb Scattering") can bring PIDM alone into kinetic eq.

\[\Rightarrow \text{Overall, Dunk Sector can evolve to an eq. dist. in both weak & strong exp.}\]

\(\alpha_p \ll \alpha_{\text{crit}} \) (weak):

\[
2^{-1/2} \geq 0.12 \left(\frac{m_x}{300 \text{GeV}} \right) \left(\frac{T_{\text{H}}}{6 \times 10^{-4} \text{MeV}} \right)^3
\]

\(\sim 0.064 \) bound \(\Rightarrow T_{\text{H}}/m_p \lesssim 6 \times 10^{-4} \).

Thus, plus \(\Re \rho^2 \approx 0.120 \Rightarrow m_x \gtrsim 400 \text{GeV} \)

\[\rho \text{ due to } \rho \text{ must (nearly) tend to zero, dominated by residual entropy production, } \Re \rho^2 \Rightarrow 8 \times 10^{-6} \text{ in very weak}\]

\(\alpha_p \approx \alpha_{\text{crit}} \) (strong):

- A bit more complicated, but essentially normal freeze-out except with \(T_0 \) (Dunk Sector temp.)

Freeze-out happens before kinetic decoupling for allowed \(T_{\text{H}} \).

Relic density leads to a bound on \(X_f \) (at freeze-out):

\[
X_f \lesssim 3 \times 10^{-5} \left(\frac{m_x}{10^{16} \text{GeV}} \right)^{1/2} \left(\frac{T_{\text{H}}}{10^{-4} \text{MeV}} \right)^{3/4}
\]

\[\Rightarrow X_f \lesssim 15 \]
- as an example, for $\Sigma = 0.5$, 52×10^3 is obtained.

- More specifically, $\Sigma \propto \left(\frac{\tau_{\nu \nu}}{m_{\nu}} \right)^{3/4} \ll 10^{-2}$

- $\Sigma \approx \Delta m_{\nu}$ is achievable only for $m_x \gg 10^4$ GeV.

- For cleaner/more in-depth treatment, see reference.

What about Chosen GUT scale PIDM?

- Assume self-annihilating DM not necessary to explain smallness.

- PIDM @ this mass are already non-viable when produced in SM processes.

$$ \langle \sigma v \rangle_{\text{ann}} \approx \frac{3 \alpha_f}{m_{\nu}} \frac{m_{\nu}}{m^3} \left(\frac{m_x}{m} \right)^2$$

- However, only if $M_\nu \ll \delta_{\text{ann}} / m_x$.

- Solving the usual way yields

$$ n_{\nu \nu} \approx 0.18 \frac{m_x^3 T_{\text{ann}}}{m_{\nu}^3} \exp\left[-2m_x / T_{\text{ann}} \right]$$

- exp. suppressed compared to γ_ν density.

- No freeze out, but possible $\gamma_{\nu \nu} \rightarrow \gamma \gamma$ production. Company ν rates

$$ \Gamma_{\gamma \gamma \rightarrow \nu \nu} \approx \frac{1}{N_x} \left(\frac{n_{\gamma \nu}}{n_{\nu}} \right)^2 \left(\frac{n_{\gamma \nu}}{m_{\gamma}} \right)^2 \frac{\pi m_{\gamma}}{m_x} S_{\text{ann}} \left(\frac{m_x}{T} \right)$$

$$ \Gamma_{\text{ann}} \approx \frac{1}{N_x} \left(\frac{n_{\nu}}{m_{\nu}} \right)^2 \frac{2 \pi m_{\nu}}{m_x} S_{\text{ann}} \left(\frac{m_x}{T} \right)$$

$$ \Rightarrow \frac{\Gamma_{\gamma \gamma \rightarrow \nu \nu}}{\Gamma_{\text{ann}}} \sim \left(\frac{n_{\gamma \nu}}{n_{\nu}} \right)^2 \frac{m_{\gamma}}{2 \pi m_{\gamma}} \frac{m_{\gamma}}{m_x} \frac{m_x}{T_{\text{ann}}} \ll 1$$

- $\Gamma_{\gamma \gamma \rightarrow \nu \nu}$ excluded vs. gravitational, but

$$ \left(\frac{n_{\gamma \nu}}{n_{\nu}} \right)^2 \left(\frac{T_{\text{ann}}}{m_{\nu}} \right)^4 \ll 1.$$
- In Situ PIDM

- A few scenarios/models in which PIDM can easily or naturally be incorporated

1. Monodromy Inflation + PIDM (effective description)

- 4D monodromy potential obtained from compactification of 11D SUGRA via mixing of an axion-like particle w/ a 4-form from effective action:

\[S_{\text{eff}} = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi^2} \mathcal{R} - \frac{1}{2} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} - \frac{1}{2} (\partial \phi \partial \phi') \phi' + \frac{1}{4} \phi \phi' \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} \right] \]

- PIDM incorporated by adding scalar field with a mass \(M \sim O(M_{\mu}) \)

\[S_{\text{PIDM}} = -\frac{1}{2} \int d^4x \sqrt{-g} \left[\partial_{\mu} \phi \partial^{\mu} \phi + M^2 \phi^2 \right] \]

and RH mechanism via

\[S_{\text{RH}} = \int d^4x \sqrt{-g} \frac{\mu^2}{\phi} G_{\mu\nu} G^{\mu\nu} \]

\[S_{\text{eff}} = S_{\text{SM}} + S_{\text{PIDM}} + S_{\text{RH}} \]

- In the model, the 4-Run describes a membrane moving in 11D SUGRA. 4-form background breaks shift symmetry, provoking quadratically

\[V_{\phi} = \frac{1}{2} (\dot{\phi} + \mu \phi^2) \]

valid for \(\frac{\mu}{\mathcal{M}} \ll \mathcal{M} / m \)

\((\mu \sim O(10^3 \mathcal{M}_{\mu})^2 \mathcal{M}_{\mu} \ll \mathcal{M}_{\mu}) \)

\(\Rightarrow \) amplitude of density fluct. \(\delta \rho / \rho \sim 10^{-5} \)

\(\Rightarrow \frac{\mu}{m} \sim 10^{13} \Rightarrow M_{\mu} \sim 10^{16} \text{ GeV} \)

So \(M_{\mu} \sim M_{\mu} \) correctly naturally.
- Effective PIDM from grav. scattering requires high T_{IR}.

- Inflation ends when inflaton B6 value,

\[\frac{\mu}{\kappa} + \phi < M_{\text{Pl}} \] 4 inflaton begins coalescing.

- Inflation - SM empty with $\mu \leq \phi \lesssim M_{1/2}$ needed to determine decay of inflaton to SM gauge sector:

\[P = \frac{\mu^3}{8\pi f_\phi^2} \Rightarrow T_{\text{IR}} = \frac{16\pi^3}{(8\pi)^4} \frac{\mu^2}{f_\phi} \]

\[\Rightarrow \text{Thus, an efficiency parameter} \]

\[\gamma = \frac{1}{16\pi} \frac{f_\phi}{\mu} \]

- From prev. parts, $m_X \sim M_{1/2} \sim M_{\text{GUT}}$ means

\[\gamma \lesssim 0.1 \Rightarrow f_\phi \mu \sim 10^{13} \text{ GeV.} \]

(alternatively, can lower m_X to $M_X \sim \mu$)

\[\text{in turn requires } f_\phi \sim M_{1/2} \sim M_{\text{GUT}} \]

2. Higgs Inflation PIDM

- Higgs (SM) as the inflaton.

\[L = \left(\frac{1}{16\pi^2} m_\phi^2 + \frac{1}{2} \partial^a H \partial^a H \right) + g^a \left(D^a H \right)^2 + \lambda \left(\frac{v^2}{2} \right)^2 \]

\(\Rightarrow \) also add the asthmatic SPIDM from noninflation.

- Critical vs. noncritical Higgs inf?!

NonCrit. inf. occurs on plateaus of STStab. inf. form

\[V_{\text{IR}} = \frac{\lambda m_\phi^4}{256\pi^2 v^2} \left(1 + e^{-\frac{v^2}{\tilde{m}_\phi^2}} \right) \]

\(\Rightarrow \) $\lambda \sim O(1)$, it turns out $\tilde{m}_\phi \sim 10^4$, and

\[r = 16 \times 10^{-5}, \quad e = 3/4 \nu^2_0 \]

\(\Rightarrow \) Pert. RH \(\Rightarrow T_{\text{IR}} \sim 10^{14} \)

\(\Rightarrow \) with $v \sim 3 \times 10^{-5} \Rightarrow \gamma \sim \frac{\mu v^2}{10^{-5} \mu^2}$
- Acting scale if \(m_x \sim 10^{-5} \mu_p \) warrants a
 connection/compatibility to leptogenesis, as
 \(m_x \sim RHN \) mass scale

Crit.: \(m_\nu \& m_\tau \) are finely tuned s.t.
 second vacuum vanishes & being
 an inflection point of potential
 that can be used for inflation.
- No inf. @ plateau
- \(\phi \sim V_{N^2} \) broken
- \(\nu \) large is possible for
 \(g \sim 10 \) and \(T_{\nu} \ll \text{GUT scale} \)
 \(\Rightarrow m_x \sim M_{\text{GUT}} \), PIDM possible.