Overview:

- Integrals of the form $I(\lambda) = \int g(z) e^{\lambda h(z)} dz$ as $|\lambda| \to \infty$ with $\lambda \in \mathbb{C}$

 - Usually two endpoints at ∞ and I converges

 - Covers a huge class of problems

 - QFT path integral of same type

- All about the saddle points of $h(z)$ ("action") $h'(z_0) = 0$

 - Often there is a saddle point $z_0 = 0$ with $h(z_0) = 0$

 \rightarrow perturbative saddle point

 - Other saddle points z_i with $h(z_i) \neq 0$: Instanton saddle points

 e.g. $h(z) = \frac{z^2}{2} + \frac{z^4}{4}$ \rightarrow pert. saddle point at $z_0 = 0$, $h(z_0) = 0$

 $h'(z) = z + z^3 = 0$ \Rightarrow $z = \pm i$

- First we can do a perturbative expansion in $\frac{1}{\lambda}$ around the pert. saddle point (e.g. in QFT), there are expansions around the instanton saddle points.

 \rightarrow Which one contribute or dominate depends on the end points, STOKES PHENOM. \rightarrow Instantons

We will see:

- How those expansions are calculated (Laplace Method I, Method of Steepest Descent II)

- That those expansions are usually divergent \rightarrow asymptotic series

- Borel Transf. gives a different function with poles in \mathbb{C}

- Laplace Transf. of Borel transf. might give good solution

- In Borel plane around the poles one finds other series (around other saddle points) \rightarrow RESURGENCE
Laplace's Method

Only real functions

\[F(\lambda) = \int_{-a}^{b} e^{-\lambda R(t)} g(t) \, dt, \quad \lambda \to \infty, \lambda > 0 \]

We only focus on \(R(t) \) that has its max in \((a, b)\) and not at \(a \) or \(b \). Also take \(R''(t_{\text{max}}) < 0 \) \(\neq 0 \)

Basically the trick is that we can solve the easier integral

\[\int_{-a}^{b} e^{-\lambda^2 t^2} \phi(t) \, dt \sim \sqrt{\frac{\pi}{\lambda}} \sum_{n=0}^{\infty} \frac{\phi^{(2n)}(0)}{2^{2n} n!} \frac{1}{\lambda^n}, \quad \lambda \to \infty, \lambda > 0 \]

Try: \(\tilde{R}(t_{\text{max}} + \tau) = -S^2 \)

\[\rightarrow \text{solve for } T \quad T(s), \tau(0) = 0 \]

Implicit function theorem: \(\rightarrow \) does not work \(\Rightarrow \) will explain later

Solution: "Blowing up the singularity"

\[T = SV \]

\[\frac{\tilde{R}(t_{\text{max}} + SV)}{S^2} = -1 \]
Then: (analytic Implicit Function Theorem)

\(x_0 \in \mathbb{C}, \ f(x_0, 0) = 0, \ f(x, \varepsilon) \) analytic at \(x = x_0, \varepsilon = 0, \)

if also \(\partial_x f(x_0) \neq 0 \) \((x_0 \text{ simple root of } f(x_0) = 0) \)

then: \(\exists \alpha > 0, \beta > 0 \text{ s.t. } \forall |\varepsilon| < \alpha \)

\(f(x, \varepsilon) = 0 \) has a unique and simple root \(x = x(\varepsilon) \)

in the disk \(|x - x_0| < \beta \).

Moreover, \(x(\varepsilon) \) is analytic for \(|\varepsilon| < \alpha, \ x(0) = x_0 \).

\[\tilde{R}(t_{\text{max}} + \tau) = -s^2 \]

\[f(\tau, s) := \tilde{R}(t_{\text{max}} + \tau) + s^2 \]

\[\Rightarrow \text{find } \tau(s) \text{ in expansion in } s. \]

\[R \sim \tau^2 \text{ close to } t_{\text{max}} \]

\[\partial_{\tau} f(\tau, 0) = \partial_{\tau} \tilde{R}(t_{\text{max}} + \tau) \bigg|_{\tau = 0} = \alpha \partial_{\tau} \tau^2 \bigg|_{\tau = 0} = 0 \quad \text{by Implicit Function Theorem does not work.} \]

Basically the problem is that this way

\[\tau(s) \sim \begin{cases} +s & \text{for } s \to 0 \Rightarrow s = 0 \text{ is branch point } \Rightarrow \text{not analytic there.} \\ -s & \text{for } s \to 0 \end{cases} \]
Solution:

Blowing up the singularity

\[\tilde{R}(t_{\text{max}} + \tau) = -s^2 \]

\[\rightarrow \tilde{R}(t_{\text{max}} + s\nu) = -s^2 \rightarrow \frac{\tilde{R}(t_{\text{max}} + s\nu)}{s^2} = -1 \]

\[f(\nu, s) = \frac{\tilde{R}(t_{\text{max}} + s\nu)}{s^2} + 1 \]

\[\approx \alpha \nu^2 + 1 \quad \text{for} \ |s| < 1 \]

\[\partial_\nu f(v, 0) \bigg|_{v=0} = 2\alpha v \bigg|_{v=0} = 0 \quad \gamma \]

What's going on?

The trick is that \(s(t) = \theta(s) \) for

\[t = s\nu \rightarrow 0 \quad \text{as} \ s \rightarrow 0, \] but that does not mean that

\[v = 0 \quad \text{if} \]

Actually:

\[\tilde{R}(t_{\text{max}} + s\nu) \approx \frac{1}{2} R''(t_{\text{max}}) v_0^2 + O(s^3) = -1 \]

\[\Rightarrow v(0) = v_0 = \sqrt{-2 R''(t_{\text{max}})} \]

\[\text{remember} \ R''(t_{\text{max}}) < 0 \]

and now

\[\partial_\nu f(v, 0) \bigg|_{v=v_0} = 2\alpha v \bigg|_{v=v_0} \neq 0 \Rightarrow \]

\[\Rightarrow \text{can do the change of variables} \quad \tau = t(s) = s\nu(s) \]

\[\Rightarrow \Phi(\lambda) = \int_{-\infty}^{b} e^{\lambda R(t)} g(t) dt = \int_{-\infty}^{b} e^{\lambda \tilde{R}(t_{\text{max}} + \tau)} g(t) dt \]

\[= e^{\lambda \tilde{R}(t_{\text{max}} + \delta)} \int_{-\alpha}^{\beta} e^{-2s^2 \lambda s^2} \gamma(s) \left(s\nu(s) + v(s) \right) ds \]

\[\alpha = \sqrt{-\tilde{R}(t_{\text{max}} + \delta)}, \ \beta = \sqrt{-\tilde{R}(t_{\text{max}} + \delta)} \]
$$\Phi(\chi) = e^{\chi R_0^2} \int_{-\infty}^{\infty} e^{-\lambda s^2} \phi(s) \, ds$$

$$\lambda \to \infty, \lambda > 0$$

_**How to get** \(\phi^{(2n)}(0) \)

$$\phi(s) = g(t_{\text{max}} + sV(s)) (sV'(s) + V(s))$$

$$\tilde{R}(t_{\text{max}} + \tau) = -s^2, \quad \tilde{R}(0) = R(0)$$

$$\tau = sV(s)$$

$$V(0) = V_0 = \sqrt{-2 \frac{2}{R''(t_{\text{max}})}}$$

$$\phi(0) = g(t_{\text{max}}) V_0$$

$$\phi'(0) = g'(t_{\text{max}}) (V_0 + V'(0) s) V(0) + g(t_{\text{max}}) (V'(s) + V'(s))$$

$$\phi'(0) = g'(t_{\text{max}}) V_0 + 2g(t_{\text{max}}) V''(0)$$

$$\phi'(0) = \left[g'(t_{\text{max}} + sV(s)) (V(s) + V'(s)s) (sV'(s) + V(s)) + g(t_{\text{max}} + sV(s)) (2V'(s) + sV''(s)) \right]_{s=0}$$

$$\phi''(0) = g''(t_{\text{max}}) V_0^2 + g(t_{\text{max}}) 2V'(0)$$

$$\phi'''(0) = g'''(t_{\text{max}}) V_0^3 + 6g'(t_{\text{max}}) V_0 V'(0) V(0) + 3g(t_{\text{max}}) V''(0)$$

Thus we need \(V'(0), V''(0) \)

$$\tilde{R}' = sV(s) = -s^2$$

$$\tilde{R}' = (t_{\text{max}} + sV(s))(sV'(s) + V(s)) = -2s, \quad s \to 0 \Rightarrow V(0)$$

$$\frac{d}{ds} \Rightarrow V'(0) \quad \text{and so on}$$

$$\Rightarrow \text{Mathematica}$$
Complex Integrals: Saddle Point Method

\[F(\lambda) = \int_{C} e^{\lambda h(z)} g(z) \, dz \], \lambda \to \infty, \lambda > 0

Saddle points at \(h'(z) = 0 \Rightarrow z_i \text{ saddle points}

Turns out: \(\text{Im}(\lambda h(z)) = \text{const} \) are paths of steepest descent
(from the Cauchy–Riemann)

\[\Rightarrow \text{at saddle points search for paths of steepest descent} \]

along this curve:

\[F(\lambda) = e^{\lambda \text{Im}(z_i)} \int_{C_i} e^{\lambda \text{Re}(z)} g(z) \, dz \], \lambda \to \infty, \lambda > 0

real integral that can be solved with saddle Laplace's method.

Plan

- Find saddle points and their steepest descent contours \(\Gamma_i \), \(i = 0, 1 \)
- Deform original contour in sum of \(\Gamma_i \): \(C = \sum_{i} S_i \Gamma_i \)
- calc. \(F_{\Gamma_i} \) along \(\Gamma_i \) with Laplace

VI
Example:

\[Z(x) = \int_{\mathbb{R}} \, dx \, e^{-\frac{1}{2} x^2 + \frac{1}{2} x^4} \]

\[S(z) = \frac{1}{2} z^2 + \frac{1}{2} x^4 \]

\[
\begin{align*}
Z_0 &= 0 \quad \text{perturbative saddle} \Rightarrow S(z_0) = 0 \\
Z_+ &= \pm \frac{1}{\sqrt{2x}} \quad \text{instanton saddle} \Rightarrow S(z_+) = -\frac{x}{2x}
\end{align*}
\]

Steepest descent paths \(z = x + iy \) \(\Rightarrow \int S(x+iy) = \int S(z_0) \) \(\Rightarrow \) b(a) or a(b)

Show figure 2 from ubel et al.

For the expansions one gets:

\[Z^{(0)}(x) \sim \sqrt{\frac{i}{2\pi}} \sum_{n=0}^{\infty} \frac{(\frac{2}{3})^n (4n)!}{2^{6n} (2n)! n!} x^n \quad \text{perturbative saddle point} \]

\[Z^{(2)}(x) \sim \sqrt{\frac{i}{2\pi}} \sum_{n=0}^{\infty} \frac{(-\frac{2}{3})^n (4n)!}{2^{6n} (2n)! n!} x^n \quad \text{instanton saddle point} \]

Both diverge: \(\nu \neq \Phi_{\nu}(x) \)

\[a_n \sim A_n^n n! \quad \text{with} \quad A = \frac{3}{2} \quad \text{instanton action} \]

Borel transform:

\[Z(x) = \sum_{n=0}^{\infty} a_n x^{n+1} \quad \text{divergent} \quad x \to 0 \]

\[B[Z](\xi) = \sum_{n=0}^{\infty} \frac{a_n \xi^n}{n!} \quad \text{finite radius of convergence} \]

\[\int_{-\infty}^{\infty} e^{i \xi t} B[Z](\xi) \, d\xi \]

\[\text{Laplace Transform} \]

\[\text{Analytic continuation} \]

\[\text{Saddle Points} \]
Borel Transform + analytic continuation

\[B[\Phi_0](\zeta) = \frac{1}{8\sqrt{2\pi}} \frac{1}{2} + \left(\frac{5}{4}, \frac{7}{4}, \frac{11}{2} \right) \]

\[B[\Phi_2](\zeta) = \frac{i}{8\sqrt{2\pi}} \frac{1}{2} + \left(\frac{5}{4}, \frac{7}{4}, \frac{11}{2} \right) \]

pole at \(\zeta = \frac{3}{2} = A \)

pole at \(\zeta = -\frac{3}{2} = -A \)

What do those singularities look like?

\[\left\{ \begin{align*}
B[\Phi_0](\zeta) & \big|_{\zeta \to A} = (2) \frac{Z_0}{2\pi i (\zeta - A)} + (2) B[\Phi_1](\zeta - A) \frac{\ln(\zeta - A)}{2\pi i} + \text{holomorphic} \\
B[\Phi_1](\zeta) & \big|_{\zeta \to A} = (-1) \frac{Z_0}{2\pi i (\zeta + A)} + (-1) B[\Phi_0](\zeta + A) \frac{\ln(\zeta + A)}{2\pi i} + \text{hol.}
\end{align*} \right. \]

Go back to saddle points

The perturbative expansion around the zero-instanton, \(Z_0 = 0 \), gives \(\Phi_0 \) which is divergent. The Borel transform has a pole which, around which, one finds \(\Phi_1 \), is the expansion around the \(2\frac{3}{2} \) instanton.
Furthermore:

The Laplace Transform (inverse Borel transform)

\[L \]

has jumps depending on the phase of \(z \).

These jumps lead to different asymptotic expansions in different sectors of \(\mathbb{L}^2 \) which is Stokes's phenomenon. One can see the same purely from looking at the paths of steepest descent.

→ Sho