
Graduate Qualifying Examination

Part 1/2: January 11–12, 2016

General Instructions

• No reference materials are allowed.

• Do all your work in the corresponding answer booklet.

• On the cover of each answer booklet put only your assigned number and the part
number/subject.

• Turn in the questions for each part with the answer booklet.

• 180 minutes are alloted for each part.

• Calculator policy:
Use of a graphing or scientific calculator is permitted provided that it has none
of the following capabilities:

– programmable
– algebraic operations
– storage of ASCII data

Handheld computers, PDAs, and cell phones are explicitly prohibited.
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Part I: Classical Mechanics (Mo, 11-Jan-2016, 2-5 pm)

Do any 5 of the 6 problems.

If you try all 6 problems, indicate clearly which 5 you want marked.

If there is no clear indication, the first 5 problems will be marked.

Problem 1. A string of length L connects to masses m1 and m2 in an Atwood machine
as shown in the figure below, where the pulley and the string are assumed to be mass-
less. The Earth’s gravitational field is acting in the x direction. Using the nomenclature
used in the figure

(a) Derive the equations of motion for m1 and m2, in-
cluding any constraint conditions.

(b) Calculate the acceleration of the two masses as a
function of m1, m2 and gravitational acceleration g.

(c) Calculate the tension T in the string.

Problem 2. A force field is given in Cartesian coordinates as

~F(~r) = (ay2z3 − 6bxz2) x̂+ 2axyz3 ŷ + (3axy2z2 − 6bx2z) ẑ

where a and b are constants and x̂, ŷ, and ẑ are the Cartesian unit vectors.

(a) Determine if the given force field is conservative.

(b) A point-like particle is moved within this force field
along a path starting at the origin O = (0, 0, 0) and
ending at point P = (x0, y0, z0),

O
C1−→ P1

C2−→ P2

C3−→ P3,

which leads over points P1 and P2. The paths C1,
C2, and C3 are parallel to the x-, y-, and z-axis,
respectively. Parametrize the paths C1, C2, and C3

and calculate the work needed to move the particle
from O to P .

(c) Can the force field ~F(~r) be derived from a potential?
If yes, calculate the corresponding potential.
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Problem 3. Two masses m1 and m2 are coupled by a spring and suspended verti-
cally using a second spring, as shown in the figure below. Both springs are identical
and have the spring constant k. In addition you can assume that m1 = m2 = m.

(a) Write the equations of motion for x1 and x2, where x1 and x2

denote the displacements from the positions of equilibrium for
m1 and m2, respectively.

(b) Calculate the eigenfrequencies and eigenmodes of the oscilla-
tion.

Problem 4. A point-like bead of mass m glides on a massless and frictionless ring.
The ring has a radius R and rotates with constant angular speed ω around its axis in
the Earth’s gravitational field, as shown in the figure below.

(a) Write down the Lagrangian of the system in terms
of the minimum number of independent degrees of
freedom.

(b) Determine the Euler-Lagrange equation(s) of mo-
tion for the Lagrangian in part (a).

(c) Calculate θ(t) for θ ≪ 1 for ω2 < g/R.

Problem 5. A point-like bead of mass m is rolling without friction on the inside
of a circular cone in the gravitational field of the Earth, as shown in the figure below.
The angle between the generatrix and the cone axis is α, i.e., the cone is parameterized
by r = z tanα. Using cylindrical polar coordinates, (r, φ, z),
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(a) Write down the Lagrangian of the system in terms
of r and φ.

(b) Determine the Euler-Lagrange equations of motion
for this Lagrangian.

(c) Are there any cyclic coordinates for the Lagrangian
in part (a), and if so, which one(s), and what are
the associated quantities?

Problem 6. A point-like particle of mass m travels under the influence of a cen-
tral force ~F, centered at (0, 0), on a circular path with radius R, centered at (R, 0),
through the coordinate origin, as shown in the figure below.

(a) Determine the position of the mass by calculat-
ing r = r(ϕ), i.e., the radial distance from the
origin as a function of the polar angle ϕ.

(b) Express the total energy in terms of r, dr/dϕ,
L, and V (where L and V are the angular mo-
mentum and potential, respectively), without
any dependencies on ṙ or ϕ̇.

(c) Calculate the magnitude and direction of the
force.
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Part II: Electricity and Magnetism (Tu, 12-Jan-2016, 2-5 pm)

Do any 5 of the 6 problems.

If you try all 6 problems, indicate clearly which 5 you want marked.

If there is no clear indication, the first 5 problems will be marked.

Problem 1. Consider a rectangle of width w (along y) and length l (along x). The
corners of the rectangle are at (x, y) = (0, 0), (0, w), (l, 0) and (l, w), as shown in the
figure below.

Assume that the two dimensional Laplace equation is valid within this rectangle. Solve
the Laplace equation for the following boundary conditions:

(a) V = V0 = const. for x = 0 on the left, V = 0 for x = l on the right, and
∂V/∂n = 0 along the top and bottom (y = 0 and y = w).

(b) V = V0 cos(πy/w) for x = 0 on the left, V = 0 for x = l on the right, and
∂V/∂n = 0 along the top and bottom (y = 0 and y = w).

Problem 2. A long coaxial cable consists of an inner cylinder with radius a and a thin
outer cylindrical shell with radius b > a. The region between the cylinders is filled with
a dielectric with dielectric constant κ. The charge density function is given by

ρ(r) =
C

4π

[

10

a4
(r − a)Θ(a− r) +

1

b2
δ(r − b)

]

,

where Θ(x) is the Heaviside step function, δ(x) is the Dirac delta function, and C is a
dimensional constant. Find the electric field in each of the three regions:

(a) inside the inner cylinder (r < a),

(b) between the cylinders (a < r < b), and

(c) outside the cable (r > b).
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Problem 3. An origin-centered spherical shell with radius R and uniform surface
charge density σ spins with angular frequency ω about the z-axis. Find the magnetic
field at z = R/2 along the axis of rotation.

Problem 4. A square loop of side a and resistance R lies at a distance s from an
infinite straight wire which carries a current I, in the same plane as that of the loop –
as shown in the figure below. The current is turned down to zero in some time ∆t.

(a) Determine the orientation of the induced
current in the square loop.

(b) Calculate the total charge which passes
through any given point of the loop during
the time ∆t.

s a

I R

Problem 5. Suppose a current density ~J(~r) is constant with time but the charge
density ρ(~r, t) is not. This is a situation which happens when charging a capacitor, for
example.

(a) Using the continuity equation, show that the charge density at any particular
point is a linear function of time, i.e., ρ(~r, t) = A(~r) + B(~r) · t.

(b) Starting from the Biot-Savart and Coulomb laws,

~B(~r) =
µ0

4π

∫ ~J(~r′)× (~r − ~r′)

|~r − ~r′|3
d3r′ and ~E(~r) =

1

4πǫ0

∫

ρ(~r′) (~r − ~r′)

|~r − ~r′|3
d3r′,

respectively, show that ~B(~r) obeys Ampere’s law with the displacement current
term. You may assume that both current and charge densities vanish for r → ∞.

Note: ~∇× (~a×~b) = ~a (~∇ ·~b)−~b (~∇ · ~a) + (~b · ~∇)~a− (~a · ~∇)~b
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Problem 6. Consider the circuit illustrated below, in which all resistors are identical
(R = 1.0 kΩ) and the two batteries have no internal resistance. Assuming that the
current through the middle branch of the circuit is IBA = 1.0mA and flows as indicated,
from point B to point A, calculate the EMF of the second battery, E2, and indicate its
orientation (polarity), given that the EMF of the first battery is E1 = 1.0V.

Note: the batteries EMF in the figure below are labeled by E, as opposed to the
standard symbol, E .

E
2
 = ...

A

B

E
1
 = 1.0 V

+

!

I
BA

R
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Graduate Qualifying Examination

Part 2/2: August 15–16, 2016

General Instructions

• No reference materials are allowed.

• Do all your work in the corresponding answer booklet.

• On the cover of each answer booklet put only your assigned number and the part
number/subject.

• Turn in the questions for each part with the answer booklet.

• 180 minutes are alloted for each part.
Thermal Physics: 90 minutes (up from 60).

• Calculator policy:
Use of a graphing or scientific calculator is permitted provided that it has none
of the following capabilities:

– programmable
– algebraic operations
– storage of ASCII data

Handheld computers, PDAs, and cell phones are explicitly prohibited.
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Part I: Quantum Mechanics (Mo, 15-Aug-2016, 2-5 pm)

Do any 5 of the 6 problems.

If you try all 6 problems, indicate clearly which 5 you want marked.

If there is no clear indication, the first 5 problems will be marked.

Problem 1. The one-dimensional time-independent Schrödinger equation is given by
[

−
h̄2

2m

d2

dx2
+ V (x)

]

φ(x) = E φ(x) . (1)

Consider a particle of mass m in the presence of a one-dimensional finite square well
given by the potential V (x).

(a) Let the potential be given by

V (x) =

{

0 for |x| ≥ a/2
−V0 for |x| < a/2

, with V0 > 0. (2)

This potential separates the spatial domain into three regions which we refer to
as regions I, II, and III for x < −a/2, −a/2 < x < a/2, and x > a/2, respectively.
The general form of the even parity solutions in regions I, II, and III is given by
φI ∼ eαx, φII ∼ cos(βx), and φIII ∼ e−αx. Express α and β in terms of the given
quantities (E, V0, m, h̄). Pick the correct signs.

(b) Derive the relation between α and β by considering the point x = −a/2 where
the wave functions merge.

(c) Now replace the potential in Eq.(2) above by a potential well in form of a delta
potential,

V (x) = −
h̄2

2m
V0 δ(x),

with V0 > 0. The solution φ(x) has a discontinuity at x = 0. Compute the size
of the discontinuity, φ

∣

∣

0+
− φ

∣

∣

0−
, using equation (1).

(d) Find the energy of the bound state solution of the potential given in part (c)
above. Express your result in terms of V0, h̄, and m.

Problem 2. A particle of mass m and charge q sits in the three-dimensional harmonic
oscillator potential

V (x) =
k

2

(

x2 + y2 + z2
)

,

with the real-valued constant k, and x = (x, y, z). Then the Hamiltonian reads

H0 =
1

2m
p2 + V (x) =

1

2m

(

p2x + p2y + p2z
)

+ V (x)

.
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(a) Using the Heisenberg algebra for position and momentum operators, obtain the
commutators for all components of the raising and lowering operators, [aα, aβ]

and [aα, a
†
β], where α, β = x, y, z and

ax =
(mω

2h̄

)1/2

(x+
i

mω
px) and a†x =

(mω

2h̄

)1/2

(x−
i

mω
px) with ω =

√

k/m.

(b) What are the energy eigenvalues of the system?

(c) What are the degeneracies of the first three excited states?

(d) At time t = −∞ the oscillator is in its ground state. Now consider adding
the time-dependent perturbation δV (t) = qAe−(t/τ)2z, with constants q, A and
τ . According to time-dependent perturbation theory, what is the probability for
finding the system in an excited state at the time t = +∞? In other words, what
is the probability for |ψ(t = +∞)〉 not to be the ground state? Provide a result
which is accurate to first order in the perturbing potential δV .

Problem 3. Let |j,m〉 be a simultaneous eigenstate of the squared angular momentum
operator J2 = J2

x + J2
y + J2

z with eigenvalue h̄2j(j + 1), and of Jz with eigenvalue h̄m.

(a) Given the ladder operators J± = Jx ± iJy, what is the expectation value of J2
x

and J2
y in the state |j,m〉?

Note: There are at least two ways of solving this task. One would involve the
relation J±|j,m〉 =

√

(j ∓m)(j ±m+ 1) h̄ |j,m± 1〉.

(b) Consider a system with the spin operator S2
x+S

2
y+S

2
z , where Sx, Sy and Sz satisfy

the angular momentum algebra in part (a) above. What is the expectation value
of S2

x in a state with spin 1/2, and the spin projected on the z-axis being −h̄/2?

Problem 4.

(a) First, consider a system which is described by a time-independent HamiltonianH0.
Let {|m〉} be the orthonormal energy eigenstates with corresponding eigenvalues
Em. Write the probability for finding the system in an arbitrary energy eigenstate
|n〉 at time t > 0, for the system initially in one of the following two cases:

(i) the energy eigenstate |ψ, t = 0〉 = |n〉,

(ii) the state |ψ, t = 0〉 = |ψ0〉, which is not an energy eigenstate.

(b) Now consider the specific example of a two state system, i.e., a system with
eigenstates {|m〉} = {|+〉, |−〉} and eigenvalues E+ = 1/2 and E− = −1/2.
Compute the probabilities for finding the system in the state |±〉 at time t > 0
given that the initial state is

3



(i) the eigenstate |ψ, t = 0〉 = |+〉,

(ii) the state |ψ, t = 0〉 = 1√
2
(|+〉 − |−〉).

(c) Let us turn to a time-dependent Hamiltonian given by

H(t) = H0 + V (t), with H0 = E+|+〉〈+| + E−|−〉〈−|

and
V (t) = γ

(

eiωt|+〉〈−|+ e−iωt|−〉〈+|
)

,

where γ is a real-valued constant. Compute the probability for finding this system
in the state |−〉 at time t = 0, and then in the state |+〉 at a later time t.

Problem 5. The observable “electron spin” is represented by

S =
h̄

2
σ, σ = (σx, σy, σz),

with

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

Work in the orthonormal basis of eigenstates of σz.

(a) Compute the eigenvectros |±〉 and the corresponding eigenvalues λ± of σz.

(b) Show that σx and σy have the same eigenvalues as σz. Is the same true for
the eigenstates? What does this imply for the observables associated with these
matrices, i.e., can one measure Sx and Sy simultaneously?

(c) Write the uncertainty relation for the measurements of the following pairs of
matrices: (σx, σy), (σx, σz), and (σy, σz).

Problem 6. The ground state wavefunction of the hydrogen atom is given by

Ψ(r) = A exp (−r/a0) ,

where a0 is the Bohr radius and A is the normalization constant.

(a) Find the value of r associated with the maximum probability density.

(b) Find the expectation value of the radial coordinate r.

(c) Find the uncertainty in a measurement of the radial coordinate r.

Note: potentially useful relationship (integration by parts):
∫ ∞

0

rn e−r dr = n

∫ ∞

0

rn−1 e−r dr.
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Part II: Thermal Physics (Tu, 16-Aug-2016, 2:00-3:30 pm)

Do any 2 of the 3 problems.

If you try all 3 problems, indicate clearly which 2 you want marked.

If there is no clear indication, the first 2 problems will be marked.

Problem 1. The thermodynamic fundamental relation for a rubber band is given by

S(U,L) = S0 + cL0 ln
U

U0

−
b

2(L1 − L0)
(L− L0)

2,

where S is the entropy, U is the internal energy, L is the length of the rubber band, L0

is the unstretched length of the rubber band, and L1 is its maximum stretched length.
In this case L forms an analog of volume.

(a) Express U in terms of the temperature T .

(b) Show that the tension τ in the rubber band is given by

τ = bT
L− L0

L1 − L0

by equating the work done to the change in internal energy obtained by adiabat-
ically stretching the rubber band.

(c) The rubber band is stretched by an amount dL at constant T . Calculate the heat
transfer dQ into the rubber band. How is this related to the work done?

Problem 2. A tank has a volume of 0.1m3 and is filled with He gas at a pressure
of 5 × 106 Pa. A second tank has a volume of 0.15m3 and is filled with He gas at a
pressure of 6× 106 Pa.

(a) A valve connecting the two tanks is opened. Assuming He to be a monoatomic
ideal gas and the walls of the tanks to be adiabatic and rigid, find the final pressure
of the system.

(b) If the temperatures within the two tanks before opening the valve had been T =
300K and 350K respectively, what would the final temperature be?

(c) If the first tank had contained He at an initial temperature of 300 K, and the
second had contained a diatomic ideal gas with cP/cV = γ = 5/2 at an initial
temperature of 350K, what would the final temperature be?
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Problem 3.

(a) A system is composed of two quantum wells, each having an energy spectrum
given by nh̄ω0, where n = 1, 2, . . . The total energy of the system is E1 = k1h̄ω0,
where k1 is a positive integer. How many microstates are available to the system
with energy E1? What is the entropy in terms of E1?

(b) What is the temperature of the system in terms of E1 in the large-energy limit?

(c) Consider a second system, similar to the first, except that the spacing between
two consecutive energy levels in each of the wells is twice as high, i.e., ω0 →
2ω0. Assuming that the two systems are in thermal equilibrium with each other,
calculate the entropy of the combined system in terms of the total energy Etot

and ω0 in the large-energy limit.
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