Names

Date_____

CAPACITORS EXPERIMENT

Introduction

In this experiment you explore how voltages and charges are distributed in a capacitor circuit. Capacitors can be connected in several ways: in this experiment we study the series and the parallel combinations.

Equipment

Power supply, Multimeter, three 0.1μ F (104k yellow) capacitors, one 0.01μ F (103k red) capacitor, one unknown (rainbow) capacitor, five cables.

Theory

Capacitors are electronic devices which have fixed values of capacitance. The capacitance *C* depends on the physical and geometrical proprieties of the device and is given operationally by the charge *Q* stored in the device divided by the voltage difference across the device ΔV .

$$C = \frac{Q}{\Delta V}$$

The schematic symbol of a capacitor is two parallel lines which represent the capacitor plates.

Series

In a series connection the components are connected at a single point, end to end.

When the series combination is connected to a power supply ΔV , the charges on each capacitor Q_{1} , Q_{2} are equal to the equivalent charge Q. The potential difference across each capacitor add to ΔV

$$Q = Q_{1} = Q_{2}$$

$$\Delta V = \Delta V_{1} + \Delta V_{2}$$
The equivalent capacitance C is $| \Delta V = \frac{1}{C_{1}} + \frac{1}{C_{2}}$

$$(C_{1} = \frac{1}{C_{1}} + \frac{1}{C_{2}}) = \frac{1}{C_{2}} + \frac{1}{C_{2}} = \frac{1}{C_{1}} + \frac{1}{C_{2}}$$

$$(C_{1} = \frac{1}{C_{1}} + \frac{1}{C_{2}}) = \frac{1}{C_{2}} + \frac{1}{C_{2}} + \frac{1}{C_{2}} = \frac{1}{C_{2}} + \frac{1}$$

<u>Parallel</u>

In the parallel connection, the components are connected together at both ends.

When the parallel combination is connected to a power supply ΔV , the charges on each capacitor Q_{1} , Q_{2} add to the equivalent charge Q. The potential difference across each capacitor are equal to ΔV .

$$Q = Q_1 + Q_2$$

$$\Delta V = \Delta V_1 = \Delta V_2$$

The equivalent capacitance *C* is
$$\Delta V = \frac{+}{-} C_1 + C_2 + C_2 + C_2 + C_1 + C_2 + C_1 + C_2 + C_1 + C_2 + C_2 + C_1 + C_2 +$$

Preliminary Questions

 $C = C_1 + C_2$

You have three identical capacitors. You connect two of them in series and to a 12V power supply. If you add the third capacitor in series with the other two:

- 1. How does the voltage across the first two capacitors changes?
- 2. How does the equivalent capacitance change?
- 3. How does the charge on the first two capacitors change?

You have three identical capacitors. You connect two of them in parallel and to a 12V power supply. If you add the third capacitor in parallel with the other two:

- 4. How does the voltage across the first two capacitors changes?
- 5. How does the equivalent capacitance change?
- 6. How does the charge on the first two capacitors change?

Procedure

Step 1. Turn on the power supply and set the AC voltage to 6 V.

7. Measure the actual power supply voltage V_{PS} with the multimeter and record it below

 $V_{PS} =$ _____V

Step 2. Connect two 0.1 µF (yellow) capacitors in series.

8. Measure V_2 across C_2 and record it below.

 V_2 (measured) = _____ V

Next, you want to compute the expected value of V_2 by using the given equations

9. Calculate the equivalent capacitance C_{12}

10. Calculate the total charge Q

11. Calculate the expected value of *V*₂

 V_2 (expected) = _____ V

12. Calculate the percentage error (assuming the exact value = measured value) of V_2

% error = (|measured - expected| / measured) x 100 = _____

By taking measurements of voltage is possible to find the unknown capacitance of a capacitor.

14. Find the capacitance of the unknown capacitor. Hint: think about the charge *Q* of the two capacitors.

 $C_2 = \underline{\qquad} \mu F.$

Step 4. Connect three 0.1 µF (yellow) capacitors in series and measure the voltage across each capacitor.

15. Are your results consistent with your prediction 1?

Step 5. Remove the $C_3 = 0.1 \ \mu\text{F}$ capacitor and replace it with a $C_3 = 0.01 \ \mu\text{F}$ (red) capacitor.

18. Calculate the equivalent capacitance *C*₁₂₃.

19. Calculate the total charge *Q*

20. Given Q, what is the charge Q_{23} ?

21. By knowing C_{23} and Q_{23} calculate the expected value of V_{23}

 V_{23} (expected) = _____ V

22. Calculate the percentage error (assuming the exact value = measured value) of V_{23}

% error = (|measured - expected| / measured) x 100 = _____

26. Calculate the charge Q_1

27. Calculate V_1 , the voltage across C_1

28. By knowing V_1 and V_{PS} calculate the expected value of V_2

 V_2 (expected) = _____ V

29. Calculate the percentage error (assuming the exact value = measured value) of V_2

% error = (|measured - expected| / measured) x 100 = _____

TURN OFF THE MULTIMETER and THE POWER SUPPLY